@article{zhang2023real,
title={Real-time infrared and visible image fusion network using adaptive pixel weighting strategy},
author={Zhang, Xuchong and Zhai, Han and Liu, Jiaxing and Wang, Zhiping and Sun, Hongbin},
journal={Information Fusion},
pages={101863},
year={2023},
publisher={Elsevier}
}
论文级别:SCI A1
影响因子:18.6
[论文下载地址]
本文作者提出了一个【轻量级、实时】的IVF网络,该网络能够自适应地学习像素权值进行图像融合。并且作者将【目标检测作为下游任务】,【联合优化】网络参数。
Multispectral image fusion 多光谱图像融合
Lightweight model 轻量级模型
Joint optimization 联合优化
Real-time 实时
Embedded platform 嵌入式平台
采用【自适应像素加权】(Adaptive Pixel Weighting strategy, APWNet)策略融合图像,并联合【目标检测】下游任务。具体来说,将可见光和红外光图像concat后输入卷积层,提取权值图,然后将其分别与对应的源图逐元素乘和加操作得到融合图像,将融合图像作为yolov5s的输入进行目标检测。(在训练过程中,根据检测结果反向优化网络参数)
参考链接
[什么是图像融合?(一看就通,通俗易懂)]
作者提出的网络结构如下所示。
首先将拼接后的红外和可见光图像送入一系列卷积层和sigmoid层,生成输入图像的权值图。然后对融合图像进行逐元运算和最大最小归一化。最后,将融合后的图像输入检测器,端到端联合训练整个网络。
I i r I_{ir} Iir和 I v i I_{vi} Ivi分别代表红外图像和可见光图像, W i r W_{ir} Wir和 W v i W_{vi} Wvi代表源图像对应的融合权重
C [ ⋅ ] C[·] C[⋅]是concatenation,即维度通道拼接。 P ( ⋅ ) P(·) P(⋅)代表自适应像素权重生成模块。
然后分别将源图与对应的权重相乘并相加,随后归一化融合图像:
最后,将融合图像输入目标检测网络得到检测结果:
清晰明了的损失函数,没什么多说的,大道至简。如有疑问可以阅读博主之前的文章。
图像融合数据集链接
[图像融合常用数据集整理]
参考资料
[图像融合定量指标分析]
and three lightweight networks
✨✨✨参考资料
✨✨✨强烈推荐必看博客[图像融合论文baseline及其网络模型]✨✨✨
更多实验结果及分析可以查看原文:
[论文下载地址]
[Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion models]
[Coconet: Coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion]
[LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images]
[(DeFusion)Fusion from decomposition: A self-supervised decomposition approach for image fusion]
[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
[(MFEIF)Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion]
[DenseFuse: A fusion approach to infrared and visible images]
[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
[IFCNN: A general image fusion framework based on convolutional neural network]
[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
[FusionGAN: A generative adversarial network for infrared and visible image fusion]
[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
[U2Fusion: A Unified Unsupervised Image Fusion Network]
综述[Visible and Infrared Image Fusion Using Deep Learning]
[图像融合论文baseline及其网络模型]
[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]
[CVPR2023、ICCV2023论文题目汇总及词频统计]
✨[图像融合论文及代码整理最全大合集]
✨[图像融合常用数据集整理]
如有疑问可联系:[email protected];
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~