【Spark精讲】SparkSQL Join选择逻辑

SparkSQL Join选择逻辑 

先看JoinSelection的注释

        If it is an equi-join, we first look at the join hints w.r.t. the following order:
         1. broadcast hint: pick broadcast hash join if the join type is supported. If both sides
            have the broadcast hints, choose the smaller side (based on stats) to broadcast.
         2. sort merge hint: pick sort merge join if join keys are sortable.
         3. shuffle hash hint: We pick shuffle hash join if the join type is supported. If both
            sides have the shuffle hash hints, choose the smaller side (based on stats) as the
            build side.
         4. shuffle replicate NL hint: pick cartesian product if join type is inner like.
      
       If there is no hint or the hints are not applicable, we follow these rules one by one:
         1. Pick broadcast hash join if one side is small enough to broadcast, and the join type
            is supported. If both sides are small, choose the smaller side (based on stats)
            to broadcast.
         2. Pick shuffle hash join if one side is small enough to build local hash map, and is
            much smaller than the other side, and `spark.sql.join.preferSortMergeJoin` is false.
         3. Pick sort merge join if the join keys are sortable.
         4. Pick cartesian product if join type is inner like.
         5. Pick broadcast nested loop join as the final solution. It may OOM but we don't have
            other choice.

翻译下就是:

如果是等值join,就先看join hints,顺序如下 

  1. broadcast hint:join类型支持的话选择broadcast hash join,如果join的两边都有broadcast hint,选择小的(基于统计)一方去广播
  2. sort merge hint:如果join的key是可排序的,选择sort merge join
  3. shuffle hash hint:join类型支持的话选择shuffle hash join
  4. shuffle replicate NL hint:如果是inner like类型(inner或cross),则选择cartesian product join

如果没有hint或者hint的类型是不合适的,按如下顺序选择

  1. broadcast hash join:如果join的一方足够小,小到可以广播,同时join类型支持,如果两边都很小,选最小的(基于统计)
  2. shuffle hash join:如果join的一方足够小可以构建hash map,并且比另一端小很多,同时需要spark.sql.join.preferSortMergeJoin置为false
  3. sort merge join:如果join的key是可排序的
  4. cartesian product:如果join类型是inner like类型(inner或cross)
  5. broadcast nested loop join:打底策略,即便可能导致OOM但别无选择

注意:

  • hash join(broadcast hash join或者shuffle hash join)只支持等值Join,不支持full outer join
  • 小到可以广播指的是,小于spark.sql.autoBroadcastJoinThreshold的阈值(默认10MB)
  val AUTO_BROADCASTJOIN_THRESHOLD = buildConf("spark.sql.autoBroadcastJoinThreshold")
    .doc("Configures the maximum size in bytes for a table that will be broadcast to all worker " +
      "nodes when performing a join.  By setting this value to -1 broadcasting can be disabled. " +
      "Note that currently statistics are only supported for Hive Metastore tables where the " +
      "command `ANALYZE TABLE  COMPUTE STATISTICS noscan` has been " +
      "run, and file-based data source tables where the statistics are computed directly on " +
      "the files of data.")
    .version("1.1.0")
    .bytesConf(ByteUnit.BYTE)
    .createWithDefaultString("10MB")
  • shuffle hash join时要求一边比另一边小很多,小很多指的是3倍小于
    /**
     * Matches a plan whose output should be small enough to be used in broadcast join.
     */
    private def canBroadcast(plan: LogicalPlan): Boolean = {
      plan.stats.sizeInBytes >= 0 && plan.stats.sizeInBytes <= conf.autoBroadcastJoinThreshold
    }

    /**
     * Matches a plan whose single partition should be small enough to build a hash table.
     *
     * Note: this assume that the number of partition is fixed, requires additional work if it's
     * dynamic.
     */
    private def canBuildLocalHashMap(plan: LogicalPlan): Boolean = {
      plan.stats.sizeInBytes < conf.autoBroadcastJoinThreshold * conf.numShufflePartitions
    }

    /**
     * Returns whether plan a is much smaller (3X) than plan b.
     *
     * The cost to build hash map is higher than sorting, we should only build hash map on a table
     * that is much smaller than other one. Since we does not have the statistic for number of rows,
     * use the size of bytes here as estimation.
     */
    private def muchSmaller(a: LogicalPlan, b: LogicalPlan): Boolean = {
      a.stats.sizeInBytes * 3 <= b.stats.sizeInBytes
    }

hash join为什么只支持等值join,同时不支持full outer join?

  • 这是由于hashmap的特性决定的,随机访问效率最高O(1),为了性能是不会通过hashmap进行遍历查找的。
  • 不支持full outer join 是因为小表做的是构建表,由于不是流式表,无法决定是否输出该行,完全是被动的

参考一下SparkSQL Join流程:

在Spark SQL中Join的实现都基于一个基本的流程,根据角色的不同,参与Join的两张表分别被称为"流式表"和"构建表",不同表的角色在Spark SQL中会通过一定的策略进行设定,通常来讲,系统会默认大表为流式表,将小表设定为构建表。

流式表的迭代器为StreamIterator,构建表的迭代器为BuildIterator。通过遍历StreamIterator中的每条记录,然后在BuildIterator中查找相匹配的记录,这个查找过程被称为Build过程,每次Build操作的结果为一条JoinedRow(A,B),其中A来自StreamIterator,B来自BuildIterator,这个过程为BuildRight操作,而如果B来自StreamIterator,A来自BuildIterator,则为BuildLeft操作。

对于LeftOuter、RightOuter、LeftSemi、RightSemi,他们的build类型是确定的,即LeftOuter、LeftSemi为BuildRight类型,RightOuter、RightSemi为BuildLeft类型。

cartesian join为什么会限制是inner like?

        def createCartesianProduct() = {
          if (joinType.isInstanceOf[InnerLike]) {
            Some(Seq(joins.CartesianProductExec(planLater(left), planLater(right), condition)))
          } else {
            None
          }
        }

可以看下JoinType的类,继承了InnerLike的一个是inner join,一个是cross join

object JoinType {
  def apply(typ: String): JoinType = typ.toLowerCase(Locale.ROOT).replace("_", "") match {
    case "inner" => Inner
    case "outer" | "full" | "fullouter" => FullOuter
    case "leftouter" | "left" => LeftOuter
    case "rightouter" | "right" => RightOuter
    case "leftsemi" | "semi" => LeftSemi
    case "leftanti" | "anti" => LeftAnti
    case "cross" => Cross
    case _ =>
      val supported = Seq(
        "inner",
        "outer", "full", "fullouter", "full_outer",
        "leftouter", "left", "left_outer",
        "rightouter", "right", "right_outer",
        "leftsemi", "left_semi", "semi",
        "leftanti", "left_anti", "anti",
        "cross")

      throw new IllegalArgumentException(s"Unsupported join type '$typ'. " +
        "Supported join types include: " + supported.mkString("'", "', '", "'") + ".")
  }
}

sealed abstract class JoinType {
  def sql: String
}

/**
 * The explicitCartesian flag indicates if the inner join was constructed with a CROSS join
 * indicating a cartesian product has been explicitly requested.
 */
sealed abstract class InnerLike extends JoinType {
  def explicitCartesian: Boolean
}

case object Inner extends InnerLike {
  override def explicitCartesian: Boolean = false
  override def sql: String = "INNER"
}

case object Cross extends InnerLike {
  override def explicitCartesian: Boolean = true
  override def sql: String = "CROSS"
}

case object LeftOuter extends JoinType {
  override def sql: String = "LEFT OUTER"
}

case object RightOuter extends JoinType {
  override def sql: String = "RIGHT OUTER"
}

case object FullOuter extends JoinType {
  override def sql: String = "FULL OUTER"
}

case object LeftSemi extends JoinType {
  override def sql: String = "LEFT SEMI"
}

case object LeftAnti extends JoinType {
  override def sql: String = "LEFT ANTI"
}
...
}

为什么Broadcast Nested Loop Join会OOM?

Broadcast Nested Loop Join需要广播数据集和嵌套循环,计算效率极低,对内存的需求也极大,因为不论数据集大小,都会有一个数据集被广播到所有executor上。

Cross Join优化案例

select /*+ mapjoin(b)*/
  a.*, sum(b.work_date) as '工作日'
from a
cross join 
work_date_dim b 
on b.begin_tm >= a.任务开始时间 
and b.end_tm < a.任务结束时间
group by ...

不加mapjoin的hint,执行结果就是特别慢!a表不到 10w, b表只有几千条,执行了30分钟还是不行!

加mapjoin的hint,不到 1分钟就执行完了。但是,注意b表不能太大。

你可能感兴趣的:(大数据,Spark,Spark精讲,spark,大数据,面试)