iOS底层-类的加载

在分析dyld和objc关联的时候,我们发现_read_images方法中有读取类的方法也有实现类的方法,我们这篇文章主要讲一下类的加载。
_read_images中源码如下:

void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
{
    header_info *hi;
    uint32_t hIndex;
    size_t count;
    size_t I;
    Class *resolvedFutureClasses = nil;
    size_t resolvedFutureClassCount = 0;
    static bool doneOnce;
    bool launchTime = NO;
    TimeLogger ts(PrintImageTimes);

    runtimeLock.assertLocked();

#define EACH_HEADER \
    hIndex = 0;         \
    hIndex < hCount && (hi = hList[hIndex]); \
    hIndex++

    if (!doneOnce) {
        doneOnce = YES;
        launchTime = YES;

#if SUPPORT_NONPOINTER_ISA
        // Disable non-pointer isa under some conditions.

# if SUPPORT_INDEXED_ISA
        // Disable nonpointer isa if any image contains old Swift code
        for (EACH_HEADER) {
            if (hi->info()->containsSwift()  &&
                hi->info()->swiftUnstableVersion() < objc_image_info::SwiftVersion3)
            {
                DisableNonpointerIsa = true;
                if (PrintRawIsa) {
                    _objc_inform("RAW ISA: disabling non-pointer isa because "
                                 "the app or a framework contains Swift code "
                                 "older than Swift 3.0");
                }
                break;
            }
        }
# endif

# if TARGET_OS_OSX
        // Disable non-pointer isa if the app is too old
        // (linked before OS X 10.11)
        if (dyld_get_program_sdk_version() < DYLD_MACOSX_VERSION_10_11) {
            DisableNonpointerIsa = true;
            if (PrintRawIsa) {
                _objc_inform("RAW ISA: disabling non-pointer isa because "
                             "the app is too old (SDK version " SDK_FORMAT ")",
                             FORMAT_SDK(dyld_get_program_sdk_version()));
            }
        }

        // Disable non-pointer isa if the app has a __DATA,__objc_rawisa section
        // New apps that load old extensions may need this.
        for (EACH_HEADER) {
            if (hi->mhdr()->filetype != MH_EXECUTE) continue;
            unsigned long size;
            if (getsectiondata(hi->mhdr(), "__DATA", "__objc_rawisa", &size)) {
                DisableNonpointerIsa = true;
                if (PrintRawIsa) {
                    _objc_inform("RAW ISA: disabling non-pointer isa because "
                                 "the app has a __DATA,__objc_rawisa section");
                }
            }
            break;  // assume only one MH_EXECUTE image
        }
# endif

#endif

        if (DisableTaggedPointers) {
            disableTaggedPointers();
        }
        
        initializeTaggedPointerObfuscator();

        if (PrintConnecting) {
            _objc_inform("CLASS: found %d classes during launch", totalClasses);
        }

        // namedClasses
        // Preoptimized classes don't go in this table.
        // 4/3 is NXMapTable's load factor
        int namedClassesSize = 
            (isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
        gdb_objc_realized_classes =
            NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);

        ts.log("IMAGE TIMES: first time tasks");
    }

    // Fix up @selector references
    static size_t UnfixedSelectors;
    {
        mutex_locker_t lock(selLock);
        for (EACH_HEADER) {
            if (hi->hasPreoptimizedSelectors()) continue;

            bool isBundle = hi->isBundle();
            SEL *sels = _getObjc2SelectorRefs(hi, &count);
            UnfixedSelectors += count;
            for (i = 0; i < count; i++) {
                const char *name = sel_cname(sels[i]);
                SEL sel = sel_registerNameNoLock(name, isBundle);
                if (sels[i] != sel) {
                    sels[i] = sel;
                }
            }
        }
    }

    ts.log("IMAGE TIMES: fix up selector references");

    // Discover classes. Fix up unresolved future classes. Mark bundle classes.
    bool hasDyldRoots = dyld_shared_cache_some_image_overridden();

    for (EACH_HEADER) {
        if (! mustReadClasses(hi, hasDyldRoots)) {
            // Image is sufficiently optimized that we need not call readClass()
            continue;
        }

        classref_t const *classlist = _getObjc2ClassList(hi, &count);

        bool headerIsBundle = hi->isBundle();
        bool headerIsPreoptimized = hi->hasPreoptimizedClasses();

        for (i = 0; i < count; i++) {
            Class cls = (Class)classlist[I];
            Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);

            if (newCls != cls  &&  newCls) {
                // Class was moved but not deleted. Currently this occurs 
                // only when the new class resolved a future class.
                // Non-lazily realize the class below.
                resolvedFutureClasses = (Class *)
                    realloc(resolvedFutureClasses, 
                            (resolvedFutureClassCount+1) * sizeof(Class));
                resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
            }
        }
    }

    ts.log("IMAGE TIMES: discover classes");

    // Fix up remapped classes
    // Class list and nonlazy class list remain unremapped.
    // Class refs and super refs are remapped for message dispatching.
    
    if (!noClassesRemapped()) {
        for (EACH_HEADER) {
            Class *classrefs = _getObjc2ClassRefs(hi, &count);
            for (i = 0; i < count; i++) {
                remapClassRef(&classrefs[I]);
            }
            // fixme why doesn't test future1 catch the absence of this?
            classrefs = _getObjc2SuperRefs(hi, &count);
            for (i = 0; i < count; i++) {
                remapClassRef(&classrefs[I]);
            }
        }
    }

    ts.log("IMAGE TIMES: remap classes");

#if SUPPORT_FIXUP
    // Fix up old objc_msgSend_fixup call sites
    for (EACH_HEADER) {
        message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
        if (count == 0) continue;

        if (PrintVtables) {
            _objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
                         "call sites in %s", count, hi->fname());
        }
        for (i = 0; i < count; i++) {
            fixupMessageRef(refs+i);
        }
    }

    ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
#endif

    bool cacheSupportsProtocolRoots = sharedCacheSupportsProtocolRoots();

    // Discover protocols. Fix up protocol refs.
    for (EACH_HEADER) {
        extern objc_class OBJC_CLASS_$_Protocol;
        Class cls = (Class)&OBJC_CLASS_$_Protocol;
        ASSERT(cls);
        NXMapTable *protocol_map = protocols();
        bool isPreoptimized = hi->hasPreoptimizedProtocols();

        // Skip reading protocols if this is an image from the shared cache
        // and we support roots
        // Note, after launch we do need to walk the protocol as the protocol
        // in the shared cache is marked with isCanonical() and that may not
        // be true if some non-shared cache binary was chosen as the canonical
        // definition
        if (launchTime && isPreoptimized && cacheSupportsProtocolRoots) {
            if (PrintProtocols) {
                _objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
                             hi->fname());
            }
            continue;
        }

        bool isBundle = hi->isBundle();

        protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
        for (i = 0; i < count; i++) {
            readProtocol(protolist[i], cls, protocol_map, 
                         isPreoptimized, isBundle);
        }
    }

    ts.log("IMAGE TIMES: discover protocols");

    // Fix up @protocol references
    // Preoptimized images may have the right 
    // answer already but we don't know for sure.
    for (EACH_HEADER) {
        // At launch time, we know preoptimized image refs are pointing at the
        // shared cache definition of a protocol.  We can skip the check on
        // launch, but have to visit @protocol refs for shared cache images
        // loaded later.
        if (launchTime && cacheSupportsProtocolRoots && hi->isPreoptimized())
            continue;
        protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
        for (i = 0; i < count; i++) {
            remapProtocolRef(&protolist[I]);
        }
    }

    ts.log("IMAGE TIMES: fix up @protocol references");

    // Discover categories. Only do this after the initial category
    // attachment has been done. For categories present at startup,
    // discovery is deferred until the first load_images call after
    // the call to _dyld_objc_notify_register completes. rdar://problem/53119145
    if (didInitialAttachCategories) {
        for (EACH_HEADER) {
            load_categories_nolock(hi);
        }
    }

    ts.log("IMAGE TIMES: discover categories");

    // Category discovery MUST BE Late to avoid potential races
    // when other threads call the new category code before
    // this thread finishes its fixups.

    // +load handled by prepare_load_methods()
    
    // Realize non-lazy classes (for +load methods and static instances) -  懒加载类 -> 非懒加载类
    // 懒 别人不懂我 我就不动 - 让它 提前加载 - load_images 类
    // 懒加载类在什么时候? 
    for (EACH_HEADER) {
        classref_t const *classlist = 
            _getObjc2NonlazyClassList(hi, &count);
        for (i = 0; i < count; i++) {
            Class cls = remapClass(classlist[i]);
            
            const char *mangledName  = cls->mangledName();
            const char *LGPersonName = "LGPerson";
           
            if (strcmp(mangledName, LGPersonName) == 0) {
                auto kc_ro = (const class_ro_t *)cls->data();
                printf("_getObjc2NonlazyClassList: 这个是我要研究的 %s \n",LGPersonName);
            }
            
            if (!cls) continue;

            addClassTableEntry(cls);

            if (cls->isSwiftStable()) {
                if (cls->swiftMetadataInitializer()) {
                    _objc_fatal("Swift class %s with a metadata initializer "
                                "is not allowed to be non-lazy",
                                cls->nameForLogging());
                }
                // fixme also disallow relocatable classes
                // We can't disallow all Swift classes because of
                // classes like Swift.__EmptyArrayStorage
            }  // alloc init - 类存在 完备 实例
            realizeClassWithoutSwift(cls, nil);
        }
    }

    ts.log("IMAGE TIMES: realize non-lazy classes");
    
    // Realize newly-resolved future classes, in case CF manipulates them
    if (resolvedFutureClasses) {
        for (i = 0; i < resolvedFutureClassCount; i++) {
            Class cls = resolvedFutureClasses[I];
            if (cls->isSwiftStable()) {
                _objc_fatal("Swift class is not allowed to be future");
            }
            realizeClassWithoutSwift(cls, nil);
            cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
        }
        free(resolvedFutureClasses);
    }

    ts.log("IMAGE TIMES: realize future classes");

    if (DebugNonFragileIvars) {
        realizeAllClasses();
    }


    // Print preoptimization statistics
    if (PrintPreopt) {
        static unsigned int PreoptTotalMethodLists;
        static unsigned int PreoptOptimizedMethodLists;
        static unsigned int PreoptTotalClasses;
        static unsigned int PreoptOptimizedClasses;

        for (EACH_HEADER) {
            if (hi->hasPreoptimizedSelectors()) {
                _objc_inform("PREOPTIMIZATION: honoring preoptimized selectors "
                             "in %s", hi->fname());
            }
            else if (hi->info()->optimizedByDyld()) {
                _objc_inform("PREOPTIMIZATION: IGNORING preoptimized selectors "
                             "in %s", hi->fname());
            }

            classref_t const *classlist = _getObjc2ClassList(hi, &count);
            for (i = 0; i < count; i++) {
                Class cls = remapClass(classlist[i]);
                if (!cls) continue;

                PreoptTotalClasses++;
                if (hi->hasPreoptimizedClasses()) {
                    PreoptOptimizedClasses++;
                }
                
                const method_list_t *mlist;
                if ((mlist = ((class_ro_t *)cls->data())->baseMethods())) {
                    PreoptTotalMethodLists++;
                    if (mlist->isFixedUp()) {
                        PreoptOptimizedMethodLists++;
                    }
                }
                if ((mlist=((class_ro_t *)cls->ISA()->data())->baseMethods())) {
                    PreoptTotalMethodLists++;
                    if (mlist->isFixedUp()) {
                        PreoptOptimizedMethodLists++;
                    }
                }
            }
        }

        _objc_inform("PREOPTIMIZATION: %zu selector references not "
                     "pre-optimized", UnfixedSelectors);
        _objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) method lists pre-sorted",
                     PreoptOptimizedMethodLists, PreoptTotalMethodLists, 
                     PreoptTotalMethodLists
                     ? 100.0*PreoptOptimizedMethodLists/PreoptTotalMethodLists 
                     : 0.0);
        _objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) classes pre-registered",
                     PreoptOptimizedClasses, PreoptTotalClasses, 
                     PreoptTotalClasses 
                     ? 100.0*PreoptOptimizedClasses/PreoptTotalClasses
                     : 0.0);
        _objc_inform("PREOPTIMIZATION: %zu protocol references not "
                     "pre-optimized", UnfixedProtocolReferences);
    }

#undef EACH_HEADER
}

readClass:读取类

readClass主要是读取类,在未调用该方法前,cls只是一个地址,执行该方法后,cls是类的名称,其源码实现如下,关键代码是addNamedClass和addClassTableEntry,源码实现如下:

Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
    const char *mangledName = cls->mangledName();//名字
    
    // **CJL写的** ----如果想进入自定义,自己加一个判断
    const char *LGPersonName = "LGPerson";
    if (strcmp(mangledName, LGPersonName) == 0) {
        auto kc_ro = (const class_ro_t *)cls->data();
        printf("%s -- 研究重点--%s\n", __func__,mangledName);
    }
    //当前类的父类中若有丢失的weak-linked类,则返回nil
    if (missingWeakSuperclass(cls)) {
        // No superclass (probably weak-linked). 
        // Disavow any knowledge of this subclass.
        if (PrintConnecting) {
            _objc_inform("CLASS: IGNORING class '%s' with "
                         "missing weak-linked superclass", 
                         cls->nameForLogging());
        }
        addRemappedClass(cls, nil);
        cls->superclass = nil;
        return nil;
    }
    
    cls->fixupBackwardDeployingStableSwift();
//判断是不是后期要处理的类
    //正常情况下,不会走到popFutureNamedClass,因为这是专门针对未来待处理的类的操作
    //通过断点调试,不会走到if流程里面,因此也不会对ro、rw进行操作
    Class replacing = nil;
    if (Class newCls = popFutureNamedClass(mangledName)) {
        // This name was previously allocated as a future class.
        // Copy objc_class to future class's struct.
        // Preserve future's rw data block.
        
        if (newCls->isAnySwift()) {
            _objc_fatal("Can't complete future class request for '%s' "
                        "because the real class is too big.", 
                        cls->nameForLogging());
        }
        //读取class的data,设置ro、rw
        //经过调试,并不会走到这里
        class_rw_t *rw = newCls->data();
        const class_ro_t *old_ro = rw->ro();
        memcpy(newCls, cls, sizeof(objc_class));
        rw->set_ro((class_ro_t *)newCls->data());
        newCls->setData(rw);
        freeIfMutable((char *)old_ro->name);
        free((void *)old_ro);
        
        addRemappedClass(cls, newCls);
        
        replacing = cls;
        cls = newCls;
    }
    //判断是否类是否已经加载到内存
    if (headerIsPreoptimized  &&  !replacing) {
        // class list built in shared cache
        // fixme strict assert doesn't work because of duplicates
        // ASSERT(cls == getClass(name));
        ASSERT(getClassExceptSomeSwift(mangledName));
    } else {
        addNamedClass(cls, mangledName, replacing);//加载共享缓存中的类
        addClassTableEntry(cls);//插入表,即相当于从mach-O文件 读取到 内存 中
    }

    // for future reference: shared cache never contains MH_BUNDLEs
    if (headerIsBundle) {
        cls->data()->flags |= RO_FROM_BUNDLE;
        cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
    }
    
    return cls;
}

为了能进入到我们自定义的类中,我在源码的基础上了加了部分代码。
可以概括为以下几步:

  • 通过mangledName获取类的名字,其中mangledName方法的源码实现如下:
const char *mangledName() { 
        // fixme can't assert locks here
        ASSERT(this);

        if (isRealized()  ||  isFuture()) { //这个初始化判断在lookupImp也有类似的
            return data()->ro()->name;//如果已经实例化,则从ro中获取name
        } else {
            return ((const class_ro_t *)data())->name;//反之,从mach-O的数据data中获取name
        }
    }
  • 通过addNamedClass将当前类添加到已经创建好的gdb_objc_realized_classes哈希表,该表用于存放所有类:
static void addNamedClass(Class cls, const char *name, Class replacing = nil)
{
    runtimeLock.assertLocked();
    Class old;
    if ((old = getClassExceptSomeSwift(name))  &&  old != replacing) {
        inform_duplicate(name, old, cls);

        // getMaybeUnrealizedNonMetaClass uses name lookups.
        // Classes not found by name lookup must be in the
        // secondary meta->nonmeta table.
        addNonMetaClass(cls);
    } else {
        NXMapInsert(gdb_objc_realized_classes, name, cls);
    }
    ASSERT(!(cls->data()->flags & RO_META));

    // wrong: constructed classes are already realized when they get here
    // ASSERT(!cls->isRealized());
}
  • 通过addClassTableEntry,将初始化的类添加到allocatedClasses表,这个表在iOS底层-dyld和objc的关联文章中提及过,是在_objc_init中的runtime_init就创建了allocatedClasses表:
static void
addClassTableEntry(Class cls, bool addMeta = true)
{
    runtimeLock.assertLocked();

    // This class is allowed to be a known class via the shared cache or via
    // data segments, but it is not allowed to be in the dynamic table already.
    auto &set = objc::allocatedClasses.get();

    ASSERT(set.find(cls) == set.end());

    if (!isKnownClass(cls))
        set.insert(cls);
    if (addMeta)
        addClassTableEntry(cls->ISA(), false);
}

总结

所以综上所述,readClass的主要作用就是将Mach-O中的类读取到内存,即插入表中,但是目前的类仅有两个信息:地址以及名称,而mach-O的其中的data数据还未读取出来。

realizeClassWithoutSwift:实现类

realizeClassWithoutSwift方法中有ro、rw的相关操作,这个方法在消息流程的慢速查找中有所提及,方法路径为:慢速查找(lookUpImpOrForward) -- realizeClassMaybeSwiftAndLeaveLocked -- realizeClassMaybeSwiftMaybeRelock -- realizeClassWithoutSwift(实现类)

realizeClassWithoutSwift方法主要作用是实现类,将类的data数据加载到内存中,主要有以下几部分操作:

第一步:读取data数据,并设置ro、rw
第二步:递归调用realizeClassWithoutSwift完善继承链
第三步:通过methodizeClass方法化类

第一步:读取data数据
读取classdata数据,并将其强转为ro,以及rw初始化ro拷贝一份到rw中的ro

  • ro 表示 readOnly,即只读,其在编译时就已经确定了内存,包含类名称、方法、协议和实例变量的信息,由于是只读的,所以属于Clean Memory,而Clean Memory是指加载后不会发生更改的内存

  • rw 表示 readWrite,即可读可写,由于其动态性,可能会往类中添加属性、方法、添加协议,在最新的2020的WWDC的对内存优化的说明Advancements in the Objective-C runtime - WWDC 2020 - Videos - Apple Developer中,提到rw,其实在rw中只有10%的类真正的更改了它们的方法,所以有了rwe,即类的额外信息。对于那些确实需要额外信息的类,可以分配rwe扩展记录中的一个,并将其滑入类中供其使用。其中rw就属于dirty memory,而 dirty memory是指在进程运行时会发生更改的内存类结构一经使用就会变成 ditry memory,因为运行时会向它写入新数据,例如 创建一个新的方法缓存,并从类中指向它

// fixme verify class is not in an un-dlopened part of the shared cache?
//读取class的data(),以及ro/rw创建
auto ro = (const class_ro_t *)cls->data(); //读取类结构的bits属性、//ro -- clean memory,在编译时就已经确定了内存
auto isMeta = ro->flags & RO_META; //判断元类
if (ro->flags & RO_FUTURE) {
    // This was a future class. rw data is already allocated.
    rw = cls->data(); //dirty memory 进行赋值
    ro = cls->data()->ro();
    ASSERT(!isMeta);
    cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else { //此时将数据读取进来了,也赋值完毕了
    // Normal class. Allocate writeable class data.
    rw = objc::zalloc(); //申请开辟zalloc -- rw
    rw->set_ro(ro);//rw中的ro设置为临时变量ro
    rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
    cls->setData(rw);//将cls的data赋值为rw形式
}

第二步:递归调用 realizeClassWithoutSwift 完善 继承链

递归调用realizeClassWithoutSwift完善继承链,并设置当前类、父类、元类的rw

递归调用 realizeClassWithoutSwift设置父类、元类

设置父类和元类的isa指向

通过addSubclass 和 addRootClass设置父子的双向链表指向关系,即父类中可以找到子类,子类中可以找到父类

 // Realize superclass and metaclass, if they aren't already.
    // This needs to be done after RW_REALIZED is set above, for root classes.
    // This needs to be done after class index is chosen, for root metaclasses.
    // This assumes that none of those classes have Swift contents,
    //   or that Swift's initializers have already been called.
    //   fixme that assumption will be wrong if we add support
    //   for ObjC subclasses of Swift classes. --
    //递归调用realizeClassWithoutSwift完善继承链,并处理当前类的父类、元类
    //递归实现 设置当前类、父类、元类的 rw,主要目的是确定继承链 (类继承链、元类继承链)
    //实现元类、父类
    //当isa找到根元类之后,根元类的isa是指向自己的,不会返回nil从而导致死循环——remapClass中对类在表中进行查找的操作,如果表中已有该类,则返回一个空值;如果没有则返回当前类,这样保证了类只加载一次并结束递归
    supercls = realizeClassWithoutSwift(remapClass(cls->superclass), nil);
    metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
    
...

// Update superclass and metaclass in case of remapping -- class 是 双向链表结构 即父子关系都确认了
// 将父类和元类给我们的类 分别是isa和父类的对应值
cls->superclass = supercls;
cls->initClassIsa(metacls);

...

// Connect this class to its superclass's subclass lists
//双向链表指向关系 父类中可以找到子类 子类中也可以找到父类
//通过addSubclass把当前类放到父类的子类列表中去
if (supercls) {
    addSubclass(supercls, cls);
} else {
    addRootClass(cls);
}

这里有一个问题,realizeClassWithoutSwift递归调用时,isa找到根元类之后,根元类的isa是指向自己,并不会返回nil,所以有以下递归终止条件,其目的是保证类只加载一次

在realizeClassWithoutSwift中
如果类不存在,则返回nil

如果类已经实现,则直接返回cls

第三步:通过 methodizeClass 方法化类

通过methodizeClass方法,从ro中读取方法列表(包括分类中的方法)、属性列表、协议列表赋值给rw,并返回cls

static void methodizeClass(Class cls, Class previously)
{
    runtimeLock.assertLocked();

    bool isMeta = cls->isMetaClass();
    auto rw = cls->data(); // 初始化一个rw
    auto ro = rw->ro();
    auto rwe = rw->ext();
    
    ...

    // Install methods and properties that the class implements itself.
    //将属性列表、方法列表、协议列表等贴到rw中
    // 将ro中的方法列表加入到rw中
    method_list_t *list = ro->baseMethods();//获取ro的baseMethods
    if (list) {
        prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));//methods进行排序
        if (rwe) rwe->methods.attachLists(&list, 1);//对rwe进行处理
    }
    // 加入属性
    property_list_t *proplist = ro->baseProperties;
    if (rwe && proplist) {
        rwe->properties.attachLists(&proplist, 1);
    }
    // 加入协议
    protocol_list_t *protolist = ro->baseProtocols;
    if (rwe && protolist) {
        rwe->protocols.attachLists(&protolist, 1);
    }

    // Root classes get bonus method implementations if they don't have 
    // them already. These apply before category replacements.
    if (cls->isRootMetaclass()) {
        // root metaclass
        addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
    }

    // Attach categories.
    // 加入分类中的方法
    if (previously) {
        if (isMeta) {
            objc::unattachedCategories.attachToClass(cls, previously,
                                                     ATTACH_METACLASS);
        } else {
            // When a class relocates, categories with class methods
            // may be registered on the class itself rather than on
            // the metaclass. Tell attachToClass to look for those.
            objc::unattachedCategories.attachToClass(cls, previously,
                                                     ATTACH_CLASS_AND_METACLASS);
        }
    }
    objc::unattachedCategories.attachToClass(cls, cls,
                                             isMeta ? ATTACH_METACLASS : ATTACH_CLASS);

    ....
}

方法如何排序

进入prepareMethodLists的源码实现,其内部是通过fixupMethodList方法排序:

static void 
prepareMethodLists(Class cls, method_list_t **addedLists, int addedCount,
                   bool baseMethods, bool methodsFromBundle)
{
    ...

    // Add method lists to array.
    // Reallocate un-fixed method lists.
    // The new methods are PREPENDED to the method list array.

    for (int i = 0; i < addedCount; i++) {
        method_list_t *mlist = addedLists[I];
        ASSERT(mlist);

        // Fixup selectors if necessary
        if (!mlist->isFixedUp()) {
            fixupMethodList(mlist, methodsFromBundle, true/*sort*/);//排序
        }
    }
    
    ...
}

进入fixupMethodList源码实现,是根据selector address排序

static void 
fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
{
    runtimeLock.assertLocked();
    ASSERT(!mlist->isFixedUp());

    // fixme lock less in attachMethodLists ?
    // dyld3 may have already uniqued, but not sorted, the list
    if (!mlist->isUniqued()) {
        mutex_locker_t lock(selLock);
    
        // Unique selectors in list.
        for (auto& meth : *mlist) {
            const char *name = sel_cname(meth.name);
            meth.name = sel_registerNameNoLock(name, bundleCopy);
        }
    }

    // Sort by selector address.根据sel地址排序
    if (sort) {
        method_t::SortBySELAddress sorter;
        std::stable_sort(mlist->begin(), mlist->end(), sorter);
    }
    
    // Mark method list as uniqued and sorted
    mlist->setFixedUp();
}

通过attachToClass将分类添加到主类中,其源码实现如下:

void attachToClass(Class cls, Class previously, int flags)
{
    runtimeLock.assertLocked();
    ASSERT((flags & ATTACH_CLASS) ||
           (flags & ATTACH_METACLASS) ||
           (flags & ATTACH_CLASS_AND_METACLASS));

    
    const char *mangledName  = cls->mangledName();
    const char *LGPersonName = "LGPerson";

    if (strcmp(mangledName, LGPersonName) == 0) {
        bool kc_isMeta = cls->isMetaClass();
        auto kc_rw = cls->data();
        auto kc_ro = kc_rw->ro();
        if (!kc_isMeta) {
            printf("%s: 这个是我要研究的 %s \n",__func__,LGPersonName);
        }
    }
    
    
    auto &map = get();
    auto it = map.find(previously);//找到一个分类进来一次,即一个个加载分类,不要混乱

    if (it != map.end()) {//这里会走进来:当主类没有实现load,分类开始加载,迫使主类加载,会走到if流程里面
        category_list &list = it->second;
        if (flags & ATTACH_CLASS_AND_METACLASS) {//判断是否是元类
            int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
            attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);//实例方法
            attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);//类方法
        } else {
            //如果不是元类,则只走一次 attachCategories
            attachCategories(cls, list.array(), list.count(), flags);
        }
        map.erase(it);
    }
}

在attachCategories 方法中准备分类的数据,其源码实现如下:

static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
                 int flags)
{
    if (slowpath(PrintReplacedMethods)) {
        printReplacements(cls, cats_list, cats_count);
    }
    if (slowpath(PrintConnecting)) {
        _objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
                     cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
                     cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
    }

    /*
     * Only a few classes have more than 64 categories during launch.
     * This uses a little stack, and avoids malloc.
     *
     * Categories must be added in the proper order, which is back
     * to front. To do that with the chunking, we iterate cats_list
     * from front to back, build up the local buffers backwards,
     * and call attachLists on the chunks. attachLists prepends the
     * lists, so the final result is in the expected order.
     */
    constexpr uint32_t ATTACH_BUFSIZ = 64;
    method_list_t   *mlists[ATTACH_BUFSIZ];
    property_list_t *proplists[ATTACH_BUFSIZ];
    protocol_list_t *protolists[ATTACH_BUFSIZ];

    uint32_t mcount = 0;
    uint32_t propcount = 0;
    uint32_t protocount = 0;
    bool fromBundle = NO;
    bool isMeta = (flags & ATTACH_METACLASS);
    /*
     rwe的创建,
     那么为什么要在这里进行`rwe的初始化`?因为我们现在要做一件事:往`本类`中`添加属性、方法、协议`等
     */
    auto rwe = cls->data()->extAllocIfNeeded();
        
    //mlists 是一个二维数组
    for (uint32_t i = 0; i < cats_count; i++) {
        auto& entry = cats_list[I];

        method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
        if (mlist) {
            if (mcount == ATTACH_BUFSIZ) {//mcount = 0,ATTACH_BUFSIZ= 64,不会走到if里面的流程
                prepareMethodLists(cls, mlists, mcount, NO, fromBundle);//准备排序
                rwe->methods.attachLists(mlists, mcount);
                mcount = 0;
            }
            mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
            fromBundle |= entry.hi->isBundle();
        }

        property_list_t *proplist =
            entry.cat->propertiesForMeta(isMeta, entry.hi);
        if (proplist) {
            if (propcount == ATTACH_BUFSIZ) {
                rwe->properties.attachLists(proplists, propcount);
                propcount = 0;
            }
            proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
        }

        protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
        if (protolist) {
            if (protocount == ATTACH_BUFSIZ) {
                rwe->protocols.attachLists(protolists, protocount);
                protocount = 0;
            }
            protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
        }
    }

    if (mcount > 0) {
        prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount, NO, fromBundle);//排序
        rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);//mlists + ATTACH_BUFSIZ - mcount 为内存平移
        if (flags & ATTACH_EXISTING) flushCaches(cls);
    }

    rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);

    rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}

attachLists 是如何插入数据的呢?方法属性协议都可以直接通过 attachLists 插入吗?

void attachLists(List* const * addedLists, uint32_t addedCount) {
    if (addedCount == 0) return;

    if (hasArray()) {
        // many lists -> many lists
        uint32_t oldCount = array()->count;//10
        uint32_t newCount = oldCount + addedCount;//4
        setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
        array()->count = newCount;// 10+4

        memmove(array()->lists + addedCount, array()->lists,
                oldCount * sizeof(array()->lists[0]));
        
        memcpy(array()->lists, addedLists, 
               addedCount * sizeof(array()->lists[0]));
    }
    else if (!list  &&  addedCount == 1) {
        // 0 lists -> 1 list
        list = addedLists[0];
    } 
    else {
        // 1 list -> many lists
        List* oldList = list;
        uint32_t oldCount = oldList ? 1 : 0;
        uint32_t newCount = oldCount + addedCount;
        setArray((array_t *)malloc(array_t::byteSize(newCount)));
        array()->count = newCount;
        if (oldList) array()->lists[addedCount] = oldList;
        memcpy(array()->lists, addedLists, 
               addedCount * sizeof(array()->lists[0]));
    }
}

从 attachLists 的源码实现中可以得出:

(多对多)如果当前调用 attachLists 的 list_array_tt 二维数组中有多个一维数组

通过 realloc 对容器进行重新分配大小为原来的大小加上新增的大小
通过 memmove 把原来的数据移动到容器的末尾
把新的数据 memcpy 拷贝到容器的起始位置
(0对一)如果调用 attachLists 的 list_array_tt 二维数组为空且新增大小数目为 1

直接赋值 addedList 的第一个 list

(一对多)如果当前调用 attachLists 的 list_array_tt 二维数组只有一个一维数组

通过 realloc 对容器进行重新分配大小为原来的大小加上新增的大小
由于只有一个一维数组,所以直接赋值到新 Array 的最后一个位置
把新的数据 memcpy 拷贝到容器的起始位置
而 memmove 和 memcpy 的区别在于:

在不知道需要平移的内存大小时,需要memmove进行内存平移,保证安全
memcpy从原内存地址的起始位置开始拷贝若干个字节到目标内存地址中,速度快

其他

一、主类实现 load 方法, 其中一个分类实现 load 方法,一个没有实现 load 方法

只要有一个分类是 非懒加载分类, 所有都会是非懒加载分类


图1

二、主类实现 load 方法, 分类没有实现 load 方法
主类实现 load 方法,分类的方法来自于主类的 data() -> (const class_ro_t *)cls->data(),编译时期完成 data()


图2

三、主类没有实现 load 方法, 分类没有实现 load 方法

第一次消息的时候,分类的方法也会来自于主类的 data() -> (const class_ro_t *)cls->data(),编译时期完成 data()


图3

四、主类没有实现 load 方法, 分类实现 load 方法

迫使类成为非懒加载类样式来提前加载数据

图4
类和分类搭配加载

你可能感兴趣的:(iOS底层-类的加载)