在分析dyld和objc关联的时候,我们发现_read_images方法中有读取类的方法也有实现类的方法,我们这篇文章主要讲一下类的加载。
_read_images中源码如下:
void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
{
header_info *hi;
uint32_t hIndex;
size_t count;
size_t I;
Class *resolvedFutureClasses = nil;
size_t resolvedFutureClassCount = 0;
static bool doneOnce;
bool launchTime = NO;
TimeLogger ts(PrintImageTimes);
runtimeLock.assertLocked();
#define EACH_HEADER \
hIndex = 0; \
hIndex < hCount && (hi = hList[hIndex]); \
hIndex++
if (!doneOnce) {
doneOnce = YES;
launchTime = YES;
#if SUPPORT_NONPOINTER_ISA
// Disable non-pointer isa under some conditions.
# if SUPPORT_INDEXED_ISA
// Disable nonpointer isa if any image contains old Swift code
for (EACH_HEADER) {
if (hi->info()->containsSwift() &&
hi->info()->swiftUnstableVersion() < objc_image_info::SwiftVersion3)
{
DisableNonpointerIsa = true;
if (PrintRawIsa) {
_objc_inform("RAW ISA: disabling non-pointer isa because "
"the app or a framework contains Swift code "
"older than Swift 3.0");
}
break;
}
}
# endif
# if TARGET_OS_OSX
// Disable non-pointer isa if the app is too old
// (linked before OS X 10.11)
if (dyld_get_program_sdk_version() < DYLD_MACOSX_VERSION_10_11) {
DisableNonpointerIsa = true;
if (PrintRawIsa) {
_objc_inform("RAW ISA: disabling non-pointer isa because "
"the app is too old (SDK version " SDK_FORMAT ")",
FORMAT_SDK(dyld_get_program_sdk_version()));
}
}
// Disable non-pointer isa if the app has a __DATA,__objc_rawisa section
// New apps that load old extensions may need this.
for (EACH_HEADER) {
if (hi->mhdr()->filetype != MH_EXECUTE) continue;
unsigned long size;
if (getsectiondata(hi->mhdr(), "__DATA", "__objc_rawisa", &size)) {
DisableNonpointerIsa = true;
if (PrintRawIsa) {
_objc_inform("RAW ISA: disabling non-pointer isa because "
"the app has a __DATA,__objc_rawisa section");
}
}
break; // assume only one MH_EXECUTE image
}
# endif
#endif
if (DisableTaggedPointers) {
disableTaggedPointers();
}
initializeTaggedPointerObfuscator();
if (PrintConnecting) {
_objc_inform("CLASS: found %d classes during launch", totalClasses);
}
// namedClasses
// Preoptimized classes don't go in this table.
// 4/3 is NXMapTable's load factor
int namedClassesSize =
(isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
gdb_objc_realized_classes =
NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);
ts.log("IMAGE TIMES: first time tasks");
}
// Fix up @selector references
static size_t UnfixedSelectors;
{
mutex_locker_t lock(selLock);
for (EACH_HEADER) {
if (hi->hasPreoptimizedSelectors()) continue;
bool isBundle = hi->isBundle();
SEL *sels = _getObjc2SelectorRefs(hi, &count);
UnfixedSelectors += count;
for (i = 0; i < count; i++) {
const char *name = sel_cname(sels[i]);
SEL sel = sel_registerNameNoLock(name, isBundle);
if (sels[i] != sel) {
sels[i] = sel;
}
}
}
}
ts.log("IMAGE TIMES: fix up selector references");
// Discover classes. Fix up unresolved future classes. Mark bundle classes.
bool hasDyldRoots = dyld_shared_cache_some_image_overridden();
for (EACH_HEADER) {
if (! mustReadClasses(hi, hasDyldRoots)) {
// Image is sufficiently optimized that we need not call readClass()
continue;
}
classref_t const *classlist = _getObjc2ClassList(hi, &count);
bool headerIsBundle = hi->isBundle();
bool headerIsPreoptimized = hi->hasPreoptimizedClasses();
for (i = 0; i < count; i++) {
Class cls = (Class)classlist[I];
Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);
if (newCls != cls && newCls) {
// Class was moved but not deleted. Currently this occurs
// only when the new class resolved a future class.
// Non-lazily realize the class below.
resolvedFutureClasses = (Class *)
realloc(resolvedFutureClasses,
(resolvedFutureClassCount+1) * sizeof(Class));
resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
}
}
}
ts.log("IMAGE TIMES: discover classes");
// Fix up remapped classes
// Class list and nonlazy class list remain unremapped.
// Class refs and super refs are remapped for message dispatching.
if (!noClassesRemapped()) {
for (EACH_HEADER) {
Class *classrefs = _getObjc2ClassRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[I]);
}
// fixme why doesn't test future1 catch the absence of this?
classrefs = _getObjc2SuperRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[I]);
}
}
}
ts.log("IMAGE TIMES: remap classes");
#if SUPPORT_FIXUP
// Fix up old objc_msgSend_fixup call sites
for (EACH_HEADER) {
message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
if (count == 0) continue;
if (PrintVtables) {
_objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
"call sites in %s", count, hi->fname());
}
for (i = 0; i < count; i++) {
fixupMessageRef(refs+i);
}
}
ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
#endif
bool cacheSupportsProtocolRoots = sharedCacheSupportsProtocolRoots();
// Discover protocols. Fix up protocol refs.
for (EACH_HEADER) {
extern objc_class OBJC_CLASS_$_Protocol;
Class cls = (Class)&OBJC_CLASS_$_Protocol;
ASSERT(cls);
NXMapTable *protocol_map = protocols();
bool isPreoptimized = hi->hasPreoptimizedProtocols();
// Skip reading protocols if this is an image from the shared cache
// and we support roots
// Note, after launch we do need to walk the protocol as the protocol
// in the shared cache is marked with isCanonical() and that may not
// be true if some non-shared cache binary was chosen as the canonical
// definition
if (launchTime && isPreoptimized && cacheSupportsProtocolRoots) {
if (PrintProtocols) {
_objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
hi->fname());
}
continue;
}
bool isBundle = hi->isBundle();
protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
for (i = 0; i < count; i++) {
readProtocol(protolist[i], cls, protocol_map,
isPreoptimized, isBundle);
}
}
ts.log("IMAGE TIMES: discover protocols");
// Fix up @protocol references
// Preoptimized images may have the right
// answer already but we don't know for sure.
for (EACH_HEADER) {
// At launch time, we know preoptimized image refs are pointing at the
// shared cache definition of a protocol. We can skip the check on
// launch, but have to visit @protocol refs for shared cache images
// loaded later.
if (launchTime && cacheSupportsProtocolRoots && hi->isPreoptimized())
continue;
protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
for (i = 0; i < count; i++) {
remapProtocolRef(&protolist[I]);
}
}
ts.log("IMAGE TIMES: fix up @protocol references");
// Discover categories. Only do this after the initial category
// attachment has been done. For categories present at startup,
// discovery is deferred until the first load_images call after
// the call to _dyld_objc_notify_register completes. rdar://problem/53119145
if (didInitialAttachCategories) {
for (EACH_HEADER) {
load_categories_nolock(hi);
}
}
ts.log("IMAGE TIMES: discover categories");
// Category discovery MUST BE Late to avoid potential races
// when other threads call the new category code before
// this thread finishes its fixups.
// +load handled by prepare_load_methods()
// Realize non-lazy classes (for +load methods and static instances) - 懒加载类 -> 非懒加载类
// 懒 别人不懂我 我就不动 - 让它 提前加载 - load_images 类
// 懒加载类在什么时候?
for (EACH_HEADER) {
classref_t const *classlist =
_getObjc2NonlazyClassList(hi, &count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
const char *mangledName = cls->mangledName();
const char *LGPersonName = "LGPerson";
if (strcmp(mangledName, LGPersonName) == 0) {
auto kc_ro = (const class_ro_t *)cls->data();
printf("_getObjc2NonlazyClassList: 这个是我要研究的 %s \n",LGPersonName);
}
if (!cls) continue;
addClassTableEntry(cls);
if (cls->isSwiftStable()) {
if (cls->swiftMetadataInitializer()) {
_objc_fatal("Swift class %s with a metadata initializer "
"is not allowed to be non-lazy",
cls->nameForLogging());
}
// fixme also disallow relocatable classes
// We can't disallow all Swift classes because of
// classes like Swift.__EmptyArrayStorage
} // alloc init - 类存在 完备 实例
realizeClassWithoutSwift(cls, nil);
}
}
ts.log("IMAGE TIMES: realize non-lazy classes");
// Realize newly-resolved future classes, in case CF manipulates them
if (resolvedFutureClasses) {
for (i = 0; i < resolvedFutureClassCount; i++) {
Class cls = resolvedFutureClasses[I];
if (cls->isSwiftStable()) {
_objc_fatal("Swift class is not allowed to be future");
}
realizeClassWithoutSwift(cls, nil);
cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
}
free(resolvedFutureClasses);
}
ts.log("IMAGE TIMES: realize future classes");
if (DebugNonFragileIvars) {
realizeAllClasses();
}
// Print preoptimization statistics
if (PrintPreopt) {
static unsigned int PreoptTotalMethodLists;
static unsigned int PreoptOptimizedMethodLists;
static unsigned int PreoptTotalClasses;
static unsigned int PreoptOptimizedClasses;
for (EACH_HEADER) {
if (hi->hasPreoptimizedSelectors()) {
_objc_inform("PREOPTIMIZATION: honoring preoptimized selectors "
"in %s", hi->fname());
}
else if (hi->info()->optimizedByDyld()) {
_objc_inform("PREOPTIMIZATION: IGNORING preoptimized selectors "
"in %s", hi->fname());
}
classref_t const *classlist = _getObjc2ClassList(hi, &count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
if (!cls) continue;
PreoptTotalClasses++;
if (hi->hasPreoptimizedClasses()) {
PreoptOptimizedClasses++;
}
const method_list_t *mlist;
if ((mlist = ((class_ro_t *)cls->data())->baseMethods())) {
PreoptTotalMethodLists++;
if (mlist->isFixedUp()) {
PreoptOptimizedMethodLists++;
}
}
if ((mlist=((class_ro_t *)cls->ISA()->data())->baseMethods())) {
PreoptTotalMethodLists++;
if (mlist->isFixedUp()) {
PreoptOptimizedMethodLists++;
}
}
}
}
_objc_inform("PREOPTIMIZATION: %zu selector references not "
"pre-optimized", UnfixedSelectors);
_objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) method lists pre-sorted",
PreoptOptimizedMethodLists, PreoptTotalMethodLists,
PreoptTotalMethodLists
? 100.0*PreoptOptimizedMethodLists/PreoptTotalMethodLists
: 0.0);
_objc_inform("PREOPTIMIZATION: %u/%u (%.3g%%) classes pre-registered",
PreoptOptimizedClasses, PreoptTotalClasses,
PreoptTotalClasses
? 100.0*PreoptOptimizedClasses/PreoptTotalClasses
: 0.0);
_objc_inform("PREOPTIMIZATION: %zu protocol references not "
"pre-optimized", UnfixedProtocolReferences);
}
#undef EACH_HEADER
}
readClass:读取类
readClass主要是读取类,在未调用该方法前,cls只是一个地址,执行该方法后,cls是类的名称,其源码实现如下,关键代码是addNamedClass和addClassTableEntry,源码实现如下:
Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
const char *mangledName = cls->mangledName();//名字
// **CJL写的** ----如果想进入自定义,自己加一个判断
const char *LGPersonName = "LGPerson";
if (strcmp(mangledName, LGPersonName) == 0) {
auto kc_ro = (const class_ro_t *)cls->data();
printf("%s -- 研究重点--%s\n", __func__,mangledName);
}
//当前类的父类中若有丢失的weak-linked类,则返回nil
if (missingWeakSuperclass(cls)) {
// No superclass (probably weak-linked).
// Disavow any knowledge of this subclass.
if (PrintConnecting) {
_objc_inform("CLASS: IGNORING class '%s' with "
"missing weak-linked superclass",
cls->nameForLogging());
}
addRemappedClass(cls, nil);
cls->superclass = nil;
return nil;
}
cls->fixupBackwardDeployingStableSwift();
//判断是不是后期要处理的类
//正常情况下,不会走到popFutureNamedClass,因为这是专门针对未来待处理的类的操作
//通过断点调试,不会走到if流程里面,因此也不会对ro、rw进行操作
Class replacing = nil;
if (Class newCls = popFutureNamedClass(mangledName)) {
// This name was previously allocated as a future class.
// Copy objc_class to future class's struct.
// Preserve future's rw data block.
if (newCls->isAnySwift()) {
_objc_fatal("Can't complete future class request for '%s' "
"because the real class is too big.",
cls->nameForLogging());
}
//读取class的data,设置ro、rw
//经过调试,并不会走到这里
class_rw_t *rw = newCls->data();
const class_ro_t *old_ro = rw->ro();
memcpy(newCls, cls, sizeof(objc_class));
rw->set_ro((class_ro_t *)newCls->data());
newCls->setData(rw);
freeIfMutable((char *)old_ro->name);
free((void *)old_ro);
addRemappedClass(cls, newCls);
replacing = cls;
cls = newCls;
}
//判断是否类是否已经加载到内存
if (headerIsPreoptimized && !replacing) {
// class list built in shared cache
// fixme strict assert doesn't work because of duplicates
// ASSERT(cls == getClass(name));
ASSERT(getClassExceptSomeSwift(mangledName));
} else {
addNamedClass(cls, mangledName, replacing);//加载共享缓存中的类
addClassTableEntry(cls);//插入表,即相当于从mach-O文件 读取到 内存 中
}
// for future reference: shared cache never contains MH_BUNDLEs
if (headerIsBundle) {
cls->data()->flags |= RO_FROM_BUNDLE;
cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
}
return cls;
}
为了能进入到我们自定义的类中,我在源码的基础上了加了部分代码。
可以概括为以下几步:
- 通过mangledName获取类的名字,其中mangledName方法的源码实现如下:
const char *mangledName() {
// fixme can't assert locks here
ASSERT(this);
if (isRealized() || isFuture()) { //这个初始化判断在lookupImp也有类似的
return data()->ro()->name;//如果已经实例化,则从ro中获取name
} else {
return ((const class_ro_t *)data())->name;//反之,从mach-O的数据data中获取name
}
}
- 通过addNamedClass将当前类添加到已经创建好的gdb_objc_realized_classes哈希表,该表用于存放所有类:
static void addNamedClass(Class cls, const char *name, Class replacing = nil)
{
runtimeLock.assertLocked();
Class old;
if ((old = getClassExceptSomeSwift(name)) && old != replacing) {
inform_duplicate(name, old, cls);
// getMaybeUnrealizedNonMetaClass uses name lookups.
// Classes not found by name lookup must be in the
// secondary meta->nonmeta table.
addNonMetaClass(cls);
} else {
NXMapInsert(gdb_objc_realized_classes, name, cls);
}
ASSERT(!(cls->data()->flags & RO_META));
// wrong: constructed classes are already realized when they get here
// ASSERT(!cls->isRealized());
}
- 通过
addClassTableEntry
,将初始化的类添加到allocatedClasses
表,这个表在iOS底层-dyld和objc的关联文章中提及过,是在_objc_init
中的runtime_init
就创建了allocatedClasses
表:
static void
addClassTableEntry(Class cls, bool addMeta = true)
{
runtimeLock.assertLocked();
// This class is allowed to be a known class via the shared cache or via
// data segments, but it is not allowed to be in the dynamic table already.
auto &set = objc::allocatedClasses.get();
ASSERT(set.find(cls) == set.end());
if (!isKnownClass(cls))
set.insert(cls);
if (addMeta)
addClassTableEntry(cls->ISA(), false);
}
总结
所以综上所述,readClass的主要作用就是将Mach-O中的类读取到内存,即插入表中,但是目前的类仅有两个信息:地址以及名称,而mach-O的其中的data数据还未读取出来。
realizeClassWithoutSwift:实现类
realizeClassWithoutSwift方法中有ro、rw的相关操作,这个方法在消息流程的慢速查找中有所提及,方法路径为:慢速查找(lookUpImpOrForward) -- realizeClassMaybeSwiftAndLeaveLocked -- realizeClassMaybeSwiftMaybeRelock -- realizeClassWithoutSwift(实现类)
realizeClassWithoutSwift方法主要作用是实现类,将类的data数据加载到内存中,主要有以下几部分操作:
第一步:读取data数据,并设置ro、rw
第二步:递归调用realizeClassWithoutSwift完善继承链
第三步:通过methodizeClass方法化类
第一步:读取data数据
读取class
的data
数据,并将其强转为ro
,以及rw初始化
和ro拷贝一份到rw中的ro
ro
表示readOnly
,即只读
,其在编译时就已经确定了内存,包含类名称、方法、协议和实例变量的信息,由于是只读的,所以属于Clean Memory
,而Clean Memory
是指加载后不会发生更改的内存
rw
表示readWrite
,即可读可写
,由于其动态性,可能会往类中添加属性、方法、添加协议,在最新的2020的WWDC
的对内存优化
的说明Advancements in the Objective-C runtime - WWDC 2020 - Videos - Apple Developer中,提到rw
,其实在rw
中只有10%的类真正的更改了它们的方法,所以有了rwe
,即类的额外信息
。对于那些确实需要额外信息的类,可以分配rwe扩展记录中的一个,并将其滑入类中供其使用。其中rw
就属于dirty memory
,而dirty memory
是指在进程运行时会发生更改的内存
,类结构
一经使用
就会变成ditry memory
,因为运行时会向它写入新数据,例如 创建一个新的方法缓存,并从类中指向它
// fixme verify class is not in an un-dlopened part of the shared cache?
//读取class的data(),以及ro/rw创建
auto ro = (const class_ro_t *)cls->data(); //读取类结构的bits属性、//ro -- clean memory,在编译时就已经确定了内存
auto isMeta = ro->flags & RO_META; //判断元类
if (ro->flags & RO_FUTURE) {
// This was a future class. rw data is already allocated.
rw = cls->data(); //dirty memory 进行赋值
ro = cls->data()->ro();
ASSERT(!isMeta);
cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else { //此时将数据读取进来了,也赋值完毕了
// Normal class. Allocate writeable class data.
rw = objc::zalloc(); //申请开辟zalloc -- rw
rw->set_ro(ro);//rw中的ro设置为临时变量ro
rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
cls->setData(rw);//将cls的data赋值为rw形式
}
第二步:递归调用 realizeClassWithoutSwift 完善 继承链
递归调用realizeClassWithoutSwift完善继承链,并设置当前类、父类、元类的rw
递归调用 realizeClassWithoutSwift设置父类、元类
设置父类和元类的isa指向
通过addSubclass 和 addRootClass设置父子的双向链表指向关系,即父类中可以找到子类,子类中可以找到父类
// Realize superclass and metaclass, if they aren't already.
// This needs to be done after RW_REALIZED is set above, for root classes.
// This needs to be done after class index is chosen, for root metaclasses.
// This assumes that none of those classes have Swift contents,
// or that Swift's initializers have already been called.
// fixme that assumption will be wrong if we add support
// for ObjC subclasses of Swift classes. --
//递归调用realizeClassWithoutSwift完善继承链,并处理当前类的父类、元类
//递归实现 设置当前类、父类、元类的 rw,主要目的是确定继承链 (类继承链、元类继承链)
//实现元类、父类
//当isa找到根元类之后,根元类的isa是指向自己的,不会返回nil从而导致死循环——remapClass中对类在表中进行查找的操作,如果表中已有该类,则返回一个空值;如果没有则返回当前类,这样保证了类只加载一次并结束递归
supercls = realizeClassWithoutSwift(remapClass(cls->superclass), nil);
metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
...
// Update superclass and metaclass in case of remapping -- class 是 双向链表结构 即父子关系都确认了
// 将父类和元类给我们的类 分别是isa和父类的对应值
cls->superclass = supercls;
cls->initClassIsa(metacls);
...
// Connect this class to its superclass's subclass lists
//双向链表指向关系 父类中可以找到子类 子类中也可以找到父类
//通过addSubclass把当前类放到父类的子类列表中去
if (supercls) {
addSubclass(supercls, cls);
} else {
addRootClass(cls);
}
这里有一个问题,realizeClassWithoutSwift递归调用时,isa找到根元类之后,根元类的isa是指向自己,并不会返回nil,所以有以下递归终止条件,其目的是保证类只加载一次
在realizeClassWithoutSwift中
如果类不存在,则返回nil
如果类已经实现,则直接返回cls
第三步:通过 methodizeClass 方法化类
通过methodizeClass方法,从ro中读取方法列表(包括分类中的方法)、属性列表、协议列表赋值给rw,并返回cls
static void methodizeClass(Class cls, Class previously)
{
runtimeLock.assertLocked();
bool isMeta = cls->isMetaClass();
auto rw = cls->data(); // 初始化一个rw
auto ro = rw->ro();
auto rwe = rw->ext();
...
// Install methods and properties that the class implements itself.
//将属性列表、方法列表、协议列表等贴到rw中
// 将ro中的方法列表加入到rw中
method_list_t *list = ro->baseMethods();//获取ro的baseMethods
if (list) {
prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));//methods进行排序
if (rwe) rwe->methods.attachLists(&list, 1);//对rwe进行处理
}
// 加入属性
property_list_t *proplist = ro->baseProperties;
if (rwe && proplist) {
rwe->properties.attachLists(&proplist, 1);
}
// 加入协议
protocol_list_t *protolist = ro->baseProtocols;
if (rwe && protolist) {
rwe->protocols.attachLists(&protolist, 1);
}
// Root classes get bonus method implementations if they don't have
// them already. These apply before category replacements.
if (cls->isRootMetaclass()) {
// root metaclass
addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
}
// Attach categories.
// 加入分类中的方法
if (previously) {
if (isMeta) {
objc::unattachedCategories.attachToClass(cls, previously,
ATTACH_METACLASS);
} else {
// When a class relocates, categories with class methods
// may be registered on the class itself rather than on
// the metaclass. Tell attachToClass to look for those.
objc::unattachedCategories.attachToClass(cls, previously,
ATTACH_CLASS_AND_METACLASS);
}
}
objc::unattachedCategories.attachToClass(cls, cls,
isMeta ? ATTACH_METACLASS : ATTACH_CLASS);
....
}
方法如何排序
进入prepareMethodLists的源码实现,其内部是通过fixupMethodList方法排序:
static void
prepareMethodLists(Class cls, method_list_t **addedLists, int addedCount,
bool baseMethods, bool methodsFromBundle)
{
...
// Add method lists to array.
// Reallocate un-fixed method lists.
// The new methods are PREPENDED to the method list array.
for (int i = 0; i < addedCount; i++) {
method_list_t *mlist = addedLists[I];
ASSERT(mlist);
// Fixup selectors if necessary
if (!mlist->isFixedUp()) {
fixupMethodList(mlist, methodsFromBundle, true/*sort*/);//排序
}
}
...
}
进入fixupMethodList源码实现,是根据selector address排序
static void
fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
{
runtimeLock.assertLocked();
ASSERT(!mlist->isFixedUp());
// fixme lock less in attachMethodLists ?
// dyld3 may have already uniqued, but not sorted, the list
if (!mlist->isUniqued()) {
mutex_locker_t lock(selLock);
// Unique selectors in list.
for (auto& meth : *mlist) {
const char *name = sel_cname(meth.name);
meth.name = sel_registerNameNoLock(name, bundleCopy);
}
}
// Sort by selector address.根据sel地址排序
if (sort) {
method_t::SortBySELAddress sorter;
std::stable_sort(mlist->begin(), mlist->end(), sorter);
}
// Mark method list as uniqued and sorted
mlist->setFixedUp();
}
通过attachToClass将分类添加到主类中,其源码实现如下:
void attachToClass(Class cls, Class previously, int flags)
{
runtimeLock.assertLocked();
ASSERT((flags & ATTACH_CLASS) ||
(flags & ATTACH_METACLASS) ||
(flags & ATTACH_CLASS_AND_METACLASS));
const char *mangledName = cls->mangledName();
const char *LGPersonName = "LGPerson";
if (strcmp(mangledName, LGPersonName) == 0) {
bool kc_isMeta = cls->isMetaClass();
auto kc_rw = cls->data();
auto kc_ro = kc_rw->ro();
if (!kc_isMeta) {
printf("%s: 这个是我要研究的 %s \n",__func__,LGPersonName);
}
}
auto &map = get();
auto it = map.find(previously);//找到一个分类进来一次,即一个个加载分类,不要混乱
if (it != map.end()) {//这里会走进来:当主类没有实现load,分类开始加载,迫使主类加载,会走到if流程里面
category_list &list = it->second;
if (flags & ATTACH_CLASS_AND_METACLASS) {//判断是否是元类
int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);//实例方法
attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);//类方法
} else {
//如果不是元类,则只走一次 attachCategories
attachCategories(cls, list.array(), list.count(), flags);
}
map.erase(it);
}
}
在attachCategories 方法中准备分类的数据,其源码实现如下:
static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
int flags)
{
if (slowpath(PrintReplacedMethods)) {
printReplacements(cls, cats_list, cats_count);
}
if (slowpath(PrintConnecting)) {
_objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
}
/*
* Only a few classes have more than 64 categories during launch.
* This uses a little stack, and avoids malloc.
*
* Categories must be added in the proper order, which is back
* to front. To do that with the chunking, we iterate cats_list
* from front to back, build up the local buffers backwards,
* and call attachLists on the chunks. attachLists prepends the
* lists, so the final result is in the expected order.
*/
constexpr uint32_t ATTACH_BUFSIZ = 64;
method_list_t *mlists[ATTACH_BUFSIZ];
property_list_t *proplists[ATTACH_BUFSIZ];
protocol_list_t *protolists[ATTACH_BUFSIZ];
uint32_t mcount = 0;
uint32_t propcount = 0;
uint32_t protocount = 0;
bool fromBundle = NO;
bool isMeta = (flags & ATTACH_METACLASS);
/*
rwe的创建,
那么为什么要在这里进行`rwe的初始化`?因为我们现在要做一件事:往`本类`中`添加属性、方法、协议`等
*/
auto rwe = cls->data()->extAllocIfNeeded();
//mlists 是一个二维数组
for (uint32_t i = 0; i < cats_count; i++) {
auto& entry = cats_list[I];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
if (mcount == ATTACH_BUFSIZ) {//mcount = 0,ATTACH_BUFSIZ= 64,不会走到if里面的流程
prepareMethodLists(cls, mlists, mcount, NO, fromBundle);//准备排序
rwe->methods.attachLists(mlists, mcount);
mcount = 0;
}
mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
if (propcount == ATTACH_BUFSIZ) {
rwe->properties.attachLists(proplists, propcount);
propcount = 0;
}
proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
}
protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
if (protolist) {
if (protocount == ATTACH_BUFSIZ) {
rwe->protocols.attachLists(protolists, protocount);
protocount = 0;
}
protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
}
}
if (mcount > 0) {
prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount, NO, fromBundle);//排序
rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);//mlists + ATTACH_BUFSIZ - mcount 为内存平移
if (flags & ATTACH_EXISTING) flushCaches(cls);
}
rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
attachLists 是如何插入数据的呢?方法属性协议都可以直接通过 attachLists 插入吗?
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;//10
uint32_t newCount = oldCount + addedCount;//4
setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
array()->count = newCount;// 10+4
memmove(array()->lists + addedCount, array()->lists,
oldCount * sizeof(array()->lists[0]));
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
}
else {
// 1 list -> many lists
List* oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
}
从 attachLists 的源码实现中可以得出:
(多对多)如果当前调用 attachLists 的 list_array_tt 二维数组中有多个一维数组
通过 realloc 对容器进行重新分配大小为原来的大小加上新增的大小
通过 memmove 把原来的数据移动到容器的末尾
把新的数据 memcpy 拷贝到容器的起始位置
(0对一)如果调用 attachLists 的 list_array_tt 二维数组为空且新增大小数目为 1
直接赋值 addedList 的第一个 list
(一对多)如果当前调用 attachLists 的 list_array_tt 二维数组只有一个一维数组
通过 realloc 对容器进行重新分配大小为原来的大小加上新增的大小
由于只有一个一维数组,所以直接赋值到新 Array 的最后一个位置
把新的数据 memcpy 拷贝到容器的起始位置
而 memmove 和 memcpy 的区别在于:
在不知道需要平移的内存大小时,需要memmove进行内存平移,保证安全
memcpy从原内存地址的起始位置开始拷贝若干个字节到目标内存地址中,速度快
其他
一、主类实现 load 方法, 其中一个分类实现 load 方法,一个没有实现 load 方法
只要有一个分类是 非懒加载分类, 所有都会是非懒加载分类
二、主类实现 load 方法, 分类没有实现 load 方法
主类实现 load 方法,分类的方法来自于主类的 data() -> (const class_ro_t *)cls->data(),编译时期完成 data()
三、主类没有实现 load 方法, 分类没有实现 load 方法
第一次消息的时候,分类的方法也会来自于主类的 data() -> (const class_ro_t *)cls->data(),编译时期完成 data()
四、主类没有实现 load 方法, 分类实现 load 方法
迫使类成为非懒加载类样式来提前加载数据