- 影刀 RPA 实战开发阶段总结
微刻时光
RPA加油站rpa影刀实战低代码人工智能python自动化语言模型
目录1.影刀RPA官方教程的重要性1.1系统全面的知识体系1.2权威准确的技术指导1.3贴合实际的案例教学1.4高效的学习方法引导2.官方视频教程与实战2.1官方视频教程:奠定坚实基础2.2实战:拓展应用视野3.往期实战博文导航3.1初级实战3.2中级实战3.3拼多多移动端实战实战4最后欢迎关注,收藏,谢谢大家!预告:淘宝移动端商品价格信息采集实战1.影刀RPA官方教程的重要性1.1系统全面的知识
- 机器学习之学习笔记
孤城laugh
机器学习学习笔记人工智能python
机器学习-学习笔记1.简介2.算法3.特征工程3.1数据集3.2特征提取3.3特征预处理3.4特征降维4.分类算法4.1`sklearn`转换器和估计器4.2K-近邻算法(KNN)4.3模型选择与调优4.4朴素贝叶斯算法4.5决策树4.6集成学习方法之随机森林5.回归算法5.1线性回归5.2过拟合与欠拟合5.3岭回归5.4逻辑回归(实际上是分类算法,用于解决二分类问题)6.聚类算法1.无监督学习2
- 基于opencv消除图片马赛克
小苗爸爸
opencv人工智能计算机视觉
以下是一个基于Python的图片马赛克消除函数实现,结合了图像处理和深度学习方法。由于马赛克消除涉及复杂的图像重建任务,建议根据实际需求选择合适的方法:importcv2importnumpyasnpfromPILimportImagedefremove_mosaic(image_path,output_path,method='traditional',block_size=10,scale_f
- Flink学习方法
狮歌~资深攻城狮
大数据
嘿,各位小白小伙伴们!如果你正打算学习Flink,或者刚刚开始接触Flink,别担心,很多人都是从这个阶段走过来的今天我就来给大家分享一些学习Flink的建议,希望能帮到你一、了解Flink是什么在正式开始学习之前,我们得先搞清楚Flink到底是个啥简单来说,Flink就像是一个超级高效的数据处理“小能手”它可以快速地处理大量的数据,就像一个勤劳的快递员能够迅速准确地把包裹送到目的地。比如说,在电
- python 统计库_《统计学习方法》 Python 库
weixin_39756540
python统计库
新建GitHub仓库仓库名为slmethod,统计学习方法(StatisticalLearningMethod)的简写Public公开仓库勾选InitializethisrepositorywithaREADME.gitignore选择Python添加MITLicensenew下载代码到本地,使用ssh协议。
[email protected]:iOSDevLog/slmethod.git
- 机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例
Mostcow
Python数据分析机器学习scikit-learn随机森林回归算法
机器学习_Scikit-Learn随机森林回归(RandomForestRegressor)实例随机森林回归(RandomForestRegression):随机森林是一种集成学习方法,它通过构建多个决策树来进行预测。它对于处理大量特征、非线性关系和避免过拟合都有一定的优势。在Python中,你可以使用Scikit-learn库中的RandomForestRegressor来实现。随机森林回归作为
- 2小时学懂【多元统计分析】——聚类分析(R语言)
木小鹿
多元统计R语言代码机器学习算法人工智能开发语言数据挖掘数据分析
聚类分析是一种无监督学习方法,用于将相似的观测值(或对象)分组到集群中。下面我将展示如何使用几种常见的聚类方法:K-均值(K-means)、层次聚类(HierarchicalClustering)和DBSCAN。1.K-均值聚类(K-meansClustering)K-均值是一种迭代的聚类算法,它将数据划分为K个预定义的集群。#加载需要的包library(cluster)#假设我们有一些二维数据s
- 周志华机器学习西瓜书 第五章 神经网络-学习笔记(超详细)
Sodas(填坑中....)
周志华西瓜书——详细笔记附例题图解机器学习神经网络学习人工智能数据挖掘算法
在机器学习中,神经网络一般指的是"神经网络学习",是机器学习与神经网络两个学科的交叉部分。所谓神经网络,目前用的最广泛的一个定义是"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体做出交互反应"。神经网络是一门重要的机器学习技术。它是目前最为火热的研究方向--深度学习的基础。学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助
- 2024年全新WebGIS开发学习方法
GIS好难学
学习方法GIS
现在每天都有越来越多的企业依靠与地理信息位置相关的数据来改善运营和增加利润,包括:客户位置、货物位置等,这些数据信息现在已经成为许多业务逻辑中不可或缺的一部分。但是,很少有人同时会GIS和编程,程序员分为很多种,但是GIS开发通常是指前端+GIS开发,大部分做前端的程序员,不会GIS框架,这也是GIS开发人才或缺的重要原因之一。如果想往GIS开发方向发展,但在学习的时候感到困惑,可以看下本篇文章,
- 前沿计组知识入门(二)
tianyunlinger
计组人工智能笔记
第2页:并行计算与编程硬件:多处理器多内存互连网络系统软件:并行操作系统用于表达和协调并发的编程构造应用软件:并行算法目标:利用硬件、系统和应用软件实现加速(速度提升):Tp=TspT_p=\frac{T_s}{p}Tp=pTs解决需要大量内存的问题第3页:并行算法/公式化并行公式化:并行化串行算法。并行算法:可能与串行算法完全不同。重点:主要讨论如何开发并行公式化。也会涉及一些非串行算法的并行例
- 机器学习:强化学习的epsilon贪心算法
田乐蒙
PythonML机器学习贪心算法人工智能
强化学习(ReinforcementLearning,RL)是一种机器学习方法,旨在通过与环境交互,使智能体(Agent)学习如何采取最优行动,以最大化某种累积奖励。它与监督学习和无监督学习不同,强调试错探索(Exploration-Exploitation)以及基于奖励信号的学习。强化学习任务通常用马尔可夫决策过程来描述:机器处于环境EEE中,状态空间XXX,其中每个状态x∈Xx\inXx∈X是
- 每天一个Flutter开发小项目 (3) : 高效Flutter学习与产出 - 构建简易天气应用
Neo Evolution
Flutter前端框架android学习flutter
引言欢迎回到每天一个Flutter开发小项目系列博客!在前两篇博客中,我们分别构建了计数器应用和待办事项列表应用,相信您已经对Flutter开发有了一定的基础认识。今天,我们将更进一步,探讨如何更高效地学习Flutter,并构建一个更有意思的小项目——简易天气应用。高效学习是提升技能的关键。尤其是在快速发展的技术领域,掌握高效的学习方法能够帮助我们更快地适应新技术、解决新问题,并最终提升开发效率和
- 每天一个Flutter开发小项目 (4) : 构建收藏地点应用 - 深入Flutter状态管理
Neo Evolution
Flutterflutterjavascript前端开发语言android
引言欢迎回到每天一个Flutter开发小项目系列博客!在前三篇博客中,我们从零开始构建了计数器应用、待办事项列表应用,以及简易天气应用。您不仅掌握了Flutter的基础组件和布局,还学习了网络请求、JSON解析等实用技能,更重要的是,我们一起探讨了高效的Flutter学习方法。随着应用功能的日益丰富和复杂,简单的setState状态管理方式逐渐显得力不从心。当应用状态需要在多个Widget之间共享
- 智能路径规划:从数学建模到算法优化的理论与实践
木子算法
人工智能数学建模数学建模算法人工智能
智能路径规划:从数学建模到算法优化的理论与实践一、引言在机器人学、自动驾驶、物流调度等领域,路径规划是实现自主导航的核心技术。从经典的Dijkstra算法到前沿的强化学习方法,路径规划技术的发展始终依赖于数学建模与算法优化的深度结合。本文将系统构建路径规划的理论框架,通过数学公式推导核心算法原理,并结合MATLAB代码实现完整的技术闭环。二、路径规划的数学基础(一)状态空间建模路径规划的本质是在状
- 腿足机器人之十三-强化学习PPO算法
shichaog
腿足机器人机器人算法php
腿足机器人之十三-强化学习PPO算法腿足机器人位姿常用强化学习算法PPO算法核心原理PPO算法的创新设计PPO算法典型流程优势函数对于复杂地形适应性(如楼梯、碎石路),传统的腿足机器人采用基于模型的控制器,该方法依赖精确动力学建模(如ZMP控制),存在参数调优困难以及环境扰动鲁棒性差,而采用端到端的强化学习方法,则将建模的任务交给了强化学习模型自主构建,这增加了模型对环境变化的自适应性。腿足机器人
- 你好,我是冴羽,我写了一套《前端大佬成长之路》
你好,我是冴羽。这么正式的开头说明我有了一个大动作。是的,我创建了自己的知识星球:“冴羽·前端大佬成长之路”。重点一:新的一年,我会在知识星球更新一套“前端大佬成长之路”的课程。包含目标规划篇、学习方法篇、前端学习篇、个人管理篇、职场发展篇、面试技巧篇、健康养生篇共7大篇章、40节文章。总结了我近十年的工作生活经验,让大家少走一些弯路,节省一些时间。重点二:但是帮助你全面成长,一套课程是不够的,必
- 深度学习-自学手册
谁用了尧哥这个昵称
AI深度学习
人工智能机器学习神经网络前馈神经网络:没有回路的反馈神经网络:有回路的DNN深度神经网络CNN卷积神经网络RNN循环神经网络LSTM是RNN的一种,长短期记忆网络自然语言处理神经网络神经元-分类器Hebb学习方法,随机–类似SGD一篇神经网络入门BP反向传播,表示很复杂的函数/空间分布从最后一层往前调整参数,反复循环该操作y=a(wx+b)x输入y输出a激活函
- 【学习方法】学习软件专业课程的思考方式
天若有情673
学习方法学习方法学习
学习软件专业课程的思考方式在学习软件专业课程时,我们往往会遇到一些看似简单但实际上却非常复杂的概念和理论。这种时候,我们可能会觉得书本很厚,难以理解。然而,这种看似简单的想法并不一定就是错误的,因为它激发了我们探索未知的好奇心。示例:软件工程的理解以软件工程为例,我们初学时可能会认为软件工程仅仅是研究软件的开发过程,包括设计、开发和测试三个主要步骤。这种想法看似简单明了,但实际上软件工程涉及的内容
- 《李航 统计学习方法》学习笔记——第五章决策树
eveiiii
统计学习决策树算法剪枝python机器学习
决策树5.1决策树模型与学习5.2特征选择5.2.1信息增益5.2.2信息增益比python代码实现例题:信息增益与信息增益比5.3决策树的生成5.3.1ID3算法(python实现)5.3.2C4.5生成算法(python实现)5.4决策树的剪枝5.5CART算法5.5.1CART生成5.5.2CART剪枝习题5.1(python实现)习题5.2(python实现)习题5.3习题5.4参考5.1
- 《李航 统计学习方法》学习笔记——第八章提升方法
eveiiii
统计学习python机器学习人工智能算法
提升方法8.1提升方法AdaBoost8.1.1提升方法的基本思路8.1.2AdaBoost算法8.1.3AdaBoost的例子(代码实现)8.2AdaBoost算法的训练误差分析定理8.1AdaBoost训练误差界定理8.2二分类问题AdaBoost训练误差界8.3AdaBoost算法的解释8.3.1前向分步算法8.3.2前向分步算法与AdaBoost8.4提升树8.4.1提升树模型8.4.2提
- 基于Matlab实现汽车远近光灯识别的详细步骤及代码示例
go5463158465
matlab算法机器学习matlab汽车开发语言
以下是一个基于Matlab实现汽车远近光灯识别的详细步骤及代码示例,主要通过图像处理技术来区分远光灯和近光灯。整体思路图像预处理:包括读取图像、灰度化、去噪等操作,以提高后续处理的准确性。边缘检测:找出图像中的边缘信息,有助于定位灯光区域。特征提取:提取灯光区域的特征,如亮度、面积、形状等。模式识别:根据提取的特征,利用阈值或机器学习方法进行远近光灯的分类。代码实现%读取图像image=imrea
- GrandientBoostingClassifier函数介绍
浊酒南街
#机器学习算法GBDT
目录前言用法示例前言GradientBoostingClassifier是Scikit-learn库中的一个分类器,用于实现梯度提升决策树(GradientBoostingDecisionTrees,GBDT)算法。GBDT是一种强大的集成学习方法,能够通过逐步构建一系列简单的决策树(通常是浅树)来提高模型的预测性能。它在多个机器学习竞赛中表现出色,是用于分类和回归任务的流行选择。用法fromsk
- 不要再走弯路了2025最全的黑客入门学习路线在这
渗透代老师
学习网络安全安全网络web安全
基于入门网络安全/黑客打造的:黑客&网络安全入门&进阶学习资源包在大多数的思维里总觉得[学习]得先收集资料、学习编程、学习计算机基础,这样不是不可以,但是这样学效率太低了!你要知道网络安全是一门技术,任何技术的学习一定是以实践为主的。也就是说很多的理论知识其实是可以在实践中去验证拓展的,这样学习比起你啃原理、啃书本要好理解很多。所以想要学习网络安全选对正确的学习方法很重要,这可以帮你少走很多弯路。
- 详细介绍人工智能学习框架
日记成书
反正看不懂系列人工智能
人工智能学习框架是开发者用于构建、训练和部署机器学习模型的核心工具。以下从框架分类、核心框架介绍、学习方法三个维度展开详解:一、主流人工智能框架全景图(一)基础框架层TensorFlow(Google)核心优势:工业级部署能力,支持移动端(TFLite)、浏览器(TF.js)、服务器(TFServing)特色功能:SavedModel格式跨平台兼容,XLA编译器优化计算图适用场景:生产环境部署、大
- 从零开始玩转TensorFlow:小明的机器学习故事 4
山海青风
机器学习tensorflow人工智能
探索深度学习1场景故事:小明的灵感前不久,小明一直在用传统的机器学习方法(如线性回归、逻辑回归)来预测学校篮球比赛的胜负。虽然在朋友们看来已经很不错了,但小明发现一个问题:当比赛数据越来越多、球队的特征越来越复杂时,模型的准确率提升得很慢。有一天,小明在学校图书馆翻看杂志时,看到这样一句话:“就像人的大脑有上百亿神经元,神经网络能够学习复杂的信息映射,从而取得卓越的表现。”他瞬间来了灵感:“或许我
- 机器学习与深度学习在辣椒病虫害识别中的集成分析(实验室环境)
@@南风
农作物病害识别与分类深度学习机器学习神经网络
Abstract背景:辣椒是世界上最重要的高价值蔬菜作物之一。然而,虫害和疾病感染是辣椒种植的主要限制因素。这些疾病无法根除,但可以加以处理和监测,以减轻损害。因此,采用基于图像的自动识别系统将有助于快速识别辣椒病害。从图像中提取的特征对于开发这样一个精确的识别系统至关重要。结果:本研究将传统方法提取的辣椒病虫害特征与基于深度学习方法提取的特征进行了比较。***共采集辣椒叶片图像974张,由5种病
- 初级游戏客户端社招面试问题总结
晴夏。
面试职场和发展
目录c++c#luaUnityNGUIAssetBundles资源管理Unity性能优化图形学网络场景题计组&操作系统其他知识算法题c++虚函数的原理智能指针的原理如何解决循环引用智能指针的源码c++,使用char实现自定义的一个string可以通过new去申请一块10KB的内存空间吗static意味着这些变量和函数只在本文件可见,其他文件是看不到也无法使用的,但是如果我想在其他文件也用这个sta
- 机器学习的三个步骤-ChatGPT4o作答
部分分式
机器学习人工智能
机器学习的三个步骤分别是:设置范围、设置标准、达成目标。这三个步骤是任何机器学习项目的基础框架,它们为模型的选择、优化和评估提供了清晰的指导。让我们深入探讨这三个步骤的具体内容。1.设置范围(DefiningtheScope)设置范围是机器学习项目中的第一步,它涉及到明确问题的类型和目标,选择合适的算法和模型结构。这个阶段的目标是确定适合当前任务的机器学习方法。关键内容:问题类型:监督学习(Sup
- 数据标注中的归类与定义,从聚类,相关,关联,回归四个方面分析
小宝哥Code
人工智能训练师聚类回归数据挖掘
在数据标注和AI训练过程中,数据的归类与定义是关键步骤,不同的数据分析方法可以用于不同的场景。本文从**聚类(Clustering)、相关(Correlation)、关联(Association)、回归(Regression)**四个角度探讨数据标注的优化,并结合Python代码示例进行说明。1.聚类(Clustering)1.1概念聚类是一种无监督学习方法,它将相似的数据点分为同一个组,而无需预
- LangChain 入门与避坑指北_chatglm3的half精度是什么意思
程序员老冉
langchaintransformer面试深度学习机器学习算法ai
前言:本文对最近学习LangChain的过程进行一个简单的概述,介绍基本的概念、简述需要注意的问题,并提供我觉得当下还不错的学习方法。1前期准备Python基础,alittle就行,或者拥有基本的debug能力即可上手shell基础,环境问题是所有问题中最头疼的问题,有shell命令的基础能快速复现环境即可面向对象思想。可有可无,这是后面自己查看工程结构的必须,减少重复编程。6g+的显存orOPE
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在