实验6 熟悉Hive的基本操作

一、实验目的

(1)理解 Hive 作为数据仓库在 Hadoop 体系结构中的角色。
(2)熟练使用常用的 HiveQL。


二、实验平台

  • 操作系统:Ubuntu18.04(或Ubuntu16.04);
  • Hadoop版本:3.1.3;
  • Hive版本:3.1.2;
  • JDK版本:1.8。

三、数据集

准备工作:

  • 由《Hive编程指南》(O’Reilly系列,人民邮电出版社)提供,下载地址:
    https://raw.githubusercontent.com/oreillymedia/programming_hive/master/prog-hive-1st-ed-data.zip

  • 备用下载地址:
    https://www.cocobolo.top/FileServer/prog-hive-1st-ed-data.zip

  • 下载慢可参考我上传的资源:林子雨Hive数据集下载

解压后可以得到本实验所需的 stocks.csvdividends.csv 两个文件。

进入你的 Downloads(下载)文件夹,右键解压刚下载的数据压缩包,进入 prog-hive-1st-ed-data 文件夹,右键打开终端:

cd ~/Downloads/prog-hive-1st-ed-data
sudo cp ./data/stocks/stocks.csv /usr/local/hive
sudo cp ./data/dividends/dividends.csv /usr/local/hive

进入 Hadoop 目录,启动 Hadoop:

cd /usr/local/hadoop
sbin/start-dfs.sh

启动 MySQL:

service mysql start

切换到 Hive 目录下,启动 MySQL 和 Hive:

cd /usr/local/hive
bin/hive

四、实验步骤

(1)创建一个内部表 stocks,字段分隔符为英文逗号,表结构如下所示:

stocks 表结构:

col_name data_type
exchange string
symbol string
ymd string
price_open float
price_high float
price_low float
price_close float
volume int
price_adj_close float

代码:

create table if not exists stocks
(
`exchange` string,
`symbol` string,
`ymd` string,
`price_open` float,
`price_high` float,
`price_low` float,
`price_close` float,
`volume` int,
`price_adj_close` float
)
row format delimited fields terminated by ',';

查看表:

hive> describe stocks;
OK
exchange            	string              	                    
symbol              	string              	                    
ymd                 	string              	                    
price_open          	float               	                    
price_high          	float               	                    
price_low           	float               	                    
price_close         	float               	                    
volume              	int                 	                    
price_adj_close     	float               	                    
Time taken: 0.062 seconds, Fetched: 9 row(s)
hive>

(2)创建一个外部分区表 dividends(分区字段为 exchange 和 symbol),字段分隔符为英文逗号,表结构如下所示:

dividends 表结构

col_name data_type
ymd string
dividend float
exchange string
symbol string

代码:

create external table if not exists dividends
(
`ymd` string,
`dividend` float
)
partitioned by(`exchange` string ,`symbol` string)
row format delimited fields terminated by ',';

查看表:

hive> describe dividends;
OK
ymd                 	string              	                    
dividend            	float               	                    
exchange            	string              	                    
symbol              	string              	                    
	 	 
# Partition Information	 	 
# col_name            	data_type           	comment             
exchange            	string              	                    
symbol              	string              	                    
Time taken: 0.106 seconds, Fetched: 9 row(s)
hive>

(3)从 stocks.csv 文件向 stocks 表中导入数据:

代码:

load data local inpath '/usr/local/hive/stocks.csv' overwrite into table stocks;

(4) 创建一个未分区的外部表 dividends_unpartitioned,并从 dividends.csv 向其中导入数据,表结构如下所示:

dividends_unpartitioned 表结构

col_name data_type
ymd string
dividend float
exchange string
symbol string

代码:

create external table if not exists dividends_unpartitioned
(
`exchange` string ,
`symbol` string,
`ymd` string,
`dividend` float
)
row format delimited fields terminated by ',';

导入数据:

load data local inpath '/usr/local/hive/dividends.csv' overwrite into table dividends_unpartitioned;

(5)通过对 dividends_unpartitioned 的查询语句,利用 Hive 自动分区特性向分区表 dividends 各个分区中插入对应数据。

代码:

set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.max.dynamic.partitions.pernode=1000;
insert overwrite table dividends partition(`exchange`,`symbol`) select `ymd`,`dividend`,`exchange`,`symbol` from dividends_unpartitioned;

(6)查询IBM公司(symbol = IBM)从 2000 年起所有支付股息的交易日(dividends 表中有对应记录)的收盘价(price_close)。

操作语句如下:

select s.ymd,s.symbol,s.price_close
from stocks s 
LEFT SEMI JOIN 
dividends d
ON s.ymd=d.ymd and s.symbol=d.symbol
where s.symbol='IBM' and year(ymd)>=2000;

输出如下(折叠部分输出):

2010-02-08	IBM	121.88
2009-11-06	IBM	123.49
2009-08-06	IBM	117.38
...
2000-05-08	IBM	109.75
2000-02-08	IBM	118.81
Time taken: 8.75 seconds, Fetched: 41 row(s)

(7)查询苹果公司(symbol = AAPL)2008 年 10 月每个交易日的涨跌情况,涨显示 rise,跌显示 fall,不变显示 unchange。

操作语句如下:

select ymd,
case
    when price_close-price_open>0 then 'rise'
    when price_close-price_open<0 then 'fall'
    else 'unchanged'
end as situation
from stocks
where symbol='AAPL' and substring(ymd,0,7)='2008-10';

输出如下(折叠部分输出):

2008-10-31	rise
2008-10-30	rise
...
2008-10-02	fall
2008-10-01	fall
Time taken: 0.1 seconds, Fetched: 23 row(s)

(8)查询 stocks 表中收盘价(price_close)比开盘价(price_open)高得最多的那条记录的交易所(exchange)、股票代码(symbol)、日期(ymd)、收盘价、开盘价及二者差价。

操作语句如下:

select `exchange`,`symbol`,`ymd`,price_close,price_open,price_close-price_open as `diff`
from
(
    select *
    from stocks
    order by price_close-price_open desc
    limit 1
)t;

输出如下:

NASDAQ	INFY	2000-02-11	670.06	534.5	135.56
Time taken: 4.476 seconds, Fetched: 1 row(s)

9)从 stocks 表中查询苹果公司(symbol=AAPL)年平均调整后收盘价(price_adj_close)大于 50 美元的年份及年平均调整后收盘价。

操作语句如下:

select
    year(ymd) as `year`,
    avg(price_adj_close) as avg_price from stocks
where `exchange`='NASDAQ' and symbol='AAPL'
group by year(ymd)
having avg_price > 50;

输出如下:

2006	70.81063753105255
2007	128.27390423049016
2008	141.9790115054888
2009	146.81412711976066
2010	204.72159912109376
Time taken: 2.347 seconds, Fetched: 5 row(s)

(10)查询每年年平均调整后收盘价(price_adj_close)前三名的公司的股票代码及年平均调整后收盘价。

操作语句如下:

select t2.`year`,symbol,t2.avg_price
from
(
    select
        *,row_number() over(partition by t1.`year` order by t1.avg_price desc) as `rank`
    from
    (
        select
            year(ymd) as `year`,
            symbol,
            avg(price_adj_close) as avg_price
        from stocks
        group by year(ymd),symbol
    )t1
)t2
where t2.`rank`<=3;

输出如下(折叠部分输出):

NULL	stock_symbol	NULL
1962	IBM	2.0072222134423634
1962	GE	0.16876984293025638
...
2009	GTC	174.11607115609306
2010	ISRG	319.75360107421875
2010	AMEN	313.875
2010	GTC	214.36719848632814
Time taken: 7.715 seconds, Fetched: 140 row(s)

五、总结

你可能感兴趣的:(实验报告,大数据技术与原理,实验报告,hive,大数据)