Pytorch1 使用tensor和autograd模块实现线性模型

 (1)基础方法

声明:本文章是根据《动手学深度学习pytorch版》进行学习,如有侵犯请告知,必删除
"""
简单的线性回归实现
本节将介绍如何只利用tensor和autograd实现一个线性回归的训练
"""

获取数据,数据处理,训练模型

import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random
import sys
sys.path.append("..")
from d21zh_pytorch import *

# 生成数据集: 构造一个简单的人工训练数据集,直观的比较学到的参数与真实模型参数的区别
num_inputs = 2  # 输入特征数为2
num_examples = 1000  # 指定数据集的大小为1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.from_numpy(np.random.normal(0, 1, (num_examples, num_inputs)))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b

# 使用真实权重中的随机噪声,用来生成标签
labels += torch.from_numpy(np.random.normal(0, 0.01, size=labels.size()))
# features 的每一行是长度为2的向量, labels的每一行是长度为1的标量
print(features[0], labels[0])

# 通过生成第二个特征features[:,1]和标签labels的散点图,直观的观察二者间的线性关系
set_figsize()
plt.scatter(features[:, 1].numpy(), labels.numpy(), 1)
# plt.show()

# 读取第一个小批量数据样本并打印
batch_size = 10
for x, y in data_iter(batch_size, features, labels):
    print(x, y)
    break

#  将权重初始化成均值为0,标准差为0.01的正态随机数,偏差初始化为0
w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.double)
b = torch.zeros(1, dtype=torch.double)
w.requires_grad_(requires_grad=True)   # 方便接下来对这些参数求梯度迭代参数的值
b.requires_grad_(requires_grad=True)

# 前面是数据的处理及读取
# 训练模型
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss  # 平方差损失函数

for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
    #  在每个迭代周期中要使用所有训练数据集中的样本一次
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y).sum()  # 损失函数转换成标量以便于求导
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型

        #  梯度清零
        w.grad.data.zero_()
        b.grad.data.zero_()

    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch+1, train_l.mean().item()))

# 训练完成输出参数
print(true_w, '\n', w)
print(true_b, '\n', b)

d21zh_pytorch.py

import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import random


def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')


def set_figsize(figsize=(3.5, 2.5)):
    # 设置图的尺寸
    use_svg_display()
    plt.rcParams['figure.figsize'] = figsize


# 读取数据,每次返回batch_size(批量大小)个随机样本的特征和标签
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        j = torch.LongTensor(indices[i:min(i + batch_size, num_examples)])
        # 最后一次可能不足一个batch
        yield features.index_select(0, j), labels.index_select(0, j)


# 定义线性回归函数 mm函数以用来做矩阵乘法
def linreg(X, w, b):
    return torch.mm(X, w) + b
    mat2 = torch.double


# 定义损失函数
def squared_loss(y_hat, y):
    # PS 这里返回的是向量,pytorch里的MSELoss并没有除以2
    return (y_hat - y.view(y_hat.size())) ** 2 / 2


# 定义优化算法 实现小批量随机梯度下降法,通过不断迭代模型参数来优化损失函数
def sgd(params, lr, batch_size):
    for param in params:
        param.data -= lr * param.grad / batch_size

编译环境

win10+Anaconda4.8.2+pytorch+pycharm

(2)简便方法1

# 定义模型
# 用nn.Module实现一个线性回归模型

class LinearNet(nn.Module):
    def __init__(self, n_feature):
        super(LinearNet, self).__init__()
        self.Linear = nn.Linear(n_feature, 1)

    def forward(self, x):
        y = self.linear(x)
        return y

net = LinearNet(num_inputs)
print(net)

2 others

   """
# 写法2
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # 此处还可以传入其它层
)

# 写法3
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
"""
#写法4
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
    ('linear', nn.Linear(num_inputs, 1))
    # ......
]))

生成数据后直接调用网络

3 线性模型的简洁实现

import numpy as np
import torch
from torch import nn
import torch.utils.data as Data
import random

# step1 生成数据集
num_inputs = 2
num_examples = 100
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

# step2 读取数据
batch_size = 10

# 将训练数据的特征和标签进行组合
dataset = Data.TensorDataset(features, labels)

# 随机读取小批量
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)

for X, y in data_iter:
    print(X, y)
    break

"""
# step3 定义模型
class LinearNet(nn.Module):
    def __init__(self, n_feature):
        super(LinearNet, self).__init__()
        self.linear = nn.Linear(n_feature, 1)

    def forward(self, x):
        y = self.linear(x)
        return y


net = LinearNet(num_inputs)


# 其他写法
# 1th
net = nn.Squential(
    nn.Linear(num_inputs,1)
    )
"""

net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))

print(net)

# step4 初始化模型参数
from torch.nn import init
init.normal_(net[0].weight, mean=0, std=0.01)  # 均值为0,标准差为0.01
init.constant_(net[0].bias, val=0)  # 也可直接修改bias的data

# step5 定义损失函数
loss = nn.MSELoss()  # 用均方误差作为损失函数

# step6 定义优化算法
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.03)
print(optimizer)

# step7 训练模型
num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))

问题: 其中在用nn.module 方法实现线性模型时,出现LinearNet object does not support indexing的问题

你可能感兴趣的:(深度学习,深度学习)