希尔密码(Hill Cipher)是一种替代密码方法,它使用矩阵运算来对明文进行加密和解密。
示例一:
/**
* @file hill_cipher.cpp
* @brief Implementation of [Hill
* cipher](https://en.wikipedia.org/wiki/Hill_cipher) algorithm.
*
* Program to generate the encryption-decryption key and perform encryption and
* decryption of ASCII text using the famous block cipher algorithm. This is a
* powerful encryption algorithm that is relatively easy to implement with a
* given key. The strength of the algorithm depends on the size of the block
* encryption matrix key; the bigger the matrix, the stronger the encryption and
* more difficult to break it. However, the important requirement for the matrix
* is that:
* 1. matrix should be invertible - all inversion conditions should be satisfied
* and
* 2. its determinant must not have any common factors with the length of
* character set
* Due to this restriction, most implementations only implement with small 3x3
* encryption keys and a small subset of ASCII alphabets.
*
* In the current implementation, I present to you an implementation for
* generating larger encryption keys (I have attempted upto 10x10) and an ASCII
* character set of 97 printable characters. Hence, a typical ASCII text file
* could be easily encrypted with the module. The larger character set increases
* the modulo of cipher and hence the matrix determinants can get very large
* very quickly rendering them ill-defined.
*
* \note This program uses determinant computation using LU decomposition from
* the file lu_decomposition.h
* \note The matrix generation algorithm is very rudimentary and does not
* guarantee an invertible modulus matrix. \todo Better matrix generation
* algorithm.
*
* @author [Krishna Vedala](https://github.com/kvedala)
*/
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef _OPENMP
#include
#endif
#include "../numerical_methods/lu_decomposition.h"
/**
* operator to print a matrix
*/
template
static std::ostream &operator<<(std::ostream &out, matrix
const int width = 15;
const char separator = ' ';
for (size_t row = 0; row < v.size(); row++) {
for (size_t col = 0; col < v[row].size(); col++)
out << std::left << std::setw(width) << std::setfill(separator)
<< v[row][col];
out << std::endl;
}
return out;
}
/** \namespace ciphers
* \brief Algorithms for encryption and decryption
*/
namespace ciphers {
/** dictionary of characters that can be encrypted and decrypted */
static const char *STRKEY =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789~!@#$%^&"
"*()_+`-=[]{}|;':\",./<>?\\\r\n \0";
/**
* @brief Implementation of [Hill
* Cipher](https://en.wikipedia.org/wiki/Hill_cipher) algorithm
*/
class HillCipher {
private:
/**
* @brief Function to generate a random integer in a given interval
*
* @param a lower limit of interval
* @param b upper limit of interval
* @tparam T type of output
* @return random integer in the interval \f$[a,b)\f$
*/
template
static const T2 rand_range(T1 a, T1 b) {
// generate random number between 0 and 1
long double r = static_cast
// scale and return random number as integer
return static_cast
}
/**
* @brief Function overload to fill a matrix with random integers in a given
* interval
*
* @param M pointer to matrix to be filled with random numbers
* @param a lower limit of interval
* @param b upper limit of interval
* @tparam T1 type of input range
* @tparam T2 type of matrix
* @return determinant of generated random matrix
*
* @warning There will need to be a balance between the matrix size and the
* range of random numbers. If the matrix is large, the range of random
* numbers must be small to have a well defined keys. Or if the matrix is
* smaller, the random numbers range can be larger. For an 8x8 matrix, range
* should be no more than \f$[0,10]\f$
*/
template
static double rand_range(matrix
for (size_t i = 0; i < M->size(); i++) {
for (size_t j = 0; j < M[0][0].size(); j++) {
M[0][i][j] = rand_range
}
}
return determinant_lu(*M);
}
/**
* @brief Compute
* [GCD](https://en.wikipedia.org/wiki/Greatest_common_divisor) of two
* integers using Euler's algorithm
*
* @param a first number
* @param b second number
* @return GCD of \f$a\f$ and \f$b\f$
*/
template
static const T gcd(T a, T b) {
if (b > a) // ensure always a < b
std::swap(a, b);
while (b != 0) {
T tmp = b;
b = a % b;
a = tmp;
}
return a;
}
/**
* @brief helper function to perform vector multiplication with encryption
* or decryption matrix
*
* @param vector vector to multiply
* @param key encryption or decryption key matrix
* @return corresponding encrypted or decrypted text
*/
static const std::valarray
const std::valarray
std::valarray
size_t L = std::strlen(STRKEY);
for (size_t i = 0; i < key.size(); i++) {
int tmp = 0;
for (size_t j = 0; j < vector.size(); j++) {
tmp += key[i][j] * vector[j];
}
out[i] = static_cast
}
return out;
}
/**
* @brief Get the character at a given index in the ::STRKEY
*
* @param idx index value
* @return character at the index
*/
static inline char get_idx_char(const uint8_t idx) { return STRKEY[idx]; }
/**
* @brief Get the index of a character in the ::STRKEY
*
* @param ch character to search
* @return index of character
*/
static inline uint8_t get_char_idx(const char ch) {
size_t L = std::strlen(STRKEY);
for (size_t idx = 0; idx <= L; idx++)
if (STRKEY[idx] == ch)
return idx;
std::cerr << __func__ << ":" << __LINE__ << ": (" << ch
<< ") Should not reach here!\n";
return 0;
}
/**
* @brief Convenience function to perform block cipher operations. The
* operations are identical for both encryption and decryption.
*
* @param text input text to encrypt or decrypt
* @param key key for encryption or decryption
* @return encrypted/decrypted output
*/
static const std::string codec(const std::string &text,
const matrix
size_t text_len = text.length();
size_t key_len = key.size();
// length of output string must be a multiple of key_len
// create output string and initialize with '\0' character
size_t L2 = text_len % key_len == 0
? text_len
: text_len + key_len - (text_len % key_len);
std::string coded_text(L2, '\0');
// temporary array for batch processing
int i;
#ifdef _OPENMP
#pragma parallel omp for private(i)
#endif
for (i = 0; i < L2 - key_len + 1; i += key_len) {
std::valarray
for (size_t j = 0; j < key_len; j++) {
batch_int[j] = get_char_idx(text[i + j]);
}
batch_int = mat_mul(batch_int, key);
for (size_t j = 0; j < key_len; j++) {
coded_text[i + j] =
STRKEY[batch_int[j]]; // get character at key
}
}
return coded_text;
}
/**
* Get matrix inverse using Row-transformations. Given matrix must
* be a square and non-singular.
* \returns inverse matrix
**/
template
static matrix
// Assuming A is square matrix
size_t N = A.size();
matrix
for (size_t row = 0; row < N; row++) {
for (size_t col = 0; col < N; col++) {
// create identity matrix
inverse[row][col] = (row == col) ? 1.f : 0.f;
}
}
if (A.size() != A[0].size()) {
std::cerr << "A must be a square matrix!" << std::endl;
return inverse;
}
// preallocate a temporary matrix identical to A
matrix
for (size_t row = 0; row < N; row++) {
for (size_t col = 0; col < N; col++)
temp[row][col] = static_cast
}
// start transformations
for (size_t row = 0; row < N; row++) {
for (size_t row2 = row; row2 < N && temp[row][row] == 0; row2++) {
// this to ensure diagonal elements are not 0
temp[row] = temp[row] + temp[row2];
inverse[row] = inverse[row] + inverse[row2];
}
for (size_t col2 = row; col2 < N && temp[row][row] == 0; col2++) {
// this to further ensure diagonal elements are not 0
for (size_t row2 = 0; row2 < N; row2++) {
temp[row2][row] = temp[row2][row] + temp[row2][col2];
inverse[row2][row] =
inverse[row2][row] + inverse[row2][col2];
}
}
if (temp[row][row] == 0) {
// Probably a low-rank matrix and hence singular
std::cerr << "Low-rank matrix, no inverse!" << std::endl;
return inverse;
}
// set diagonal to 1
double divisor = temp[row][row];
temp[row] = temp[row] / divisor;
inverse[row] = inverse[row] / divisor;
// Row transformations
for (size_t row2 = 0; row2 < N; row2++) {
if (row2 == row)
continue;
double factor = temp[row2][row];
temp[row2] = temp[row2] - factor * temp[row];
inverse[row2] = inverse[row2] - factor * inverse[row];
}
}
return inverse;
}
static int modulo(int a, int b) {
int ret = a % b;
if (ret < 0)
ret += b;
return ret;
}
public:
/**
* @brief Generate encryption matrix of a given size. Larger size matrices
* are difficult to generate but provide more security. Important conditions
* are:
* 1. matrix should be invertible
* 2. determinant must not have any common factors with the length of
* character key
* There is no head-fast way to generate hte matrix under the given
* numerical restrictions of the machine but the conditions added achieve
* the goals. Bigger the matrix, greater is the probability of the matrix
* being ill-defined.
*
* @param size size of matrix (typically \f$\text{size}\le10\f$)
* @param limit1 lower limit of range of random elements (default=0)
* @param limit2 upper limit of range of random elements (default=10)
* @return Encryption martix
*/
static matrix
int limit2 = 10) {
matrix
matrix
int mat_determinant = -1; // because matrix has only ints, the
// determinant will also be an int
int L = std::strlen(STRKEY);
double dd;
do {
// keeping the random number range smaller generates better
// defined matrices with more ease of cracking
dd = rand_range(&encrypt_key, limit1, limit2);
mat_determinant = static_cast
if (mat_determinant < 0)
mat_determinant = (mat_determinant % L);
} while (std::abs(dd) > 1e3 || // while ill-defined
dd < 0.1 || // while singular or negative determinant
!std::isfinite(dd) || // while determinant is not finite
gcd(mat_determinant, L) != 1); // while no common factors
// std::cout <<
return encrypt_key;
}
/**
* @brief Generate decryption matrix from an encryption matrix key.
*
* @param encrypt_key encryption key for which to create a decrypt key
* @return Decryption martix
*/
static matrix
size_t size = encrypt_key.size();
int L = std::strlen(STRKEY);
matrix
int det_encrypt = static_cast
int mat_determinant = det_encrypt < 0 ? det_encrypt % L : det_encrypt;
matrix
double d2 = determinant_lu(decrypt_key);
// find co-prime factor for inversion
int det_inv = -1;
for (int i = 0; i < L; i++) {
if (modulo(mat_determinant * i, L) == 1) {
det_inv = i;
break;
}
}
if (det_inv == -1) {
std::cerr << "Could not find a co-prime for inversion\n";
std::exit(EXIT_FAILURE);
}
mat_determinant = det_inv * det_encrypt;
// perform modular inverse of encryption matrix
int i;
#ifdef _OPENMP
#pragma parallel omp for private(i)
#endif
for (i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {
int temp = std::round(tmp_inverse[i][j] * mat_determinant);
decrypt_key[i][j] = modulo(temp, L);
}
}
return decrypt_key;
}
/**
* @brief Generate encryption and decryption key pair
*
* @param size size of matrix key (typically \f$\text{size}\le10\f$)
* @param limit1 lower limit of range of random elements (default=0)
* @param limit2 upper limit of range of random elements (default=10)
* @return std::pair
* keys as a pair
*
* @see ::generate_encryption_key
*/
static std::pair
int limit1 = 0,
int limit2 = 10) {
matrix
matrix
double det2 = determinant_lu(decrypt_key);
while (std::abs(det2) < 0.1 || std::abs(det2) > 1e3) {
encrypt_key = generate_encryption_key(size, limit1, limit2);
decrypt_key = generate_decryption_key(encrypt_key);
det2 = determinant_lu(decrypt_key);
}
return std::make_pair(encrypt_key, decrypt_key);
}
/**
* @brief Encrypt a given text using a given key
*
* @param text string to encrypt
* @param encrypt_key key for encryption
* @return encrypted text
*/
static const std::string encrypt_text(const std::string &text,
const matrix
return codec(text, encrypt_key);
}
/**
* @brief Decrypt a given text using a given key
*
* @param text string to decrypt
* @param decrypt_key key for decryption
* @return decrypted text
*/
static const std::string decrypt_text(const std::string &text,
const matrix
return codec(text, decrypt_key);
}
};
} // namespace ciphers
/**
* @brief Self test 1 - using 3x3 randomly generated key
*
* @param text string to encrypt and decrypt
*/
void test1(const std::string &text) {
// std::string text = "Hello world!";
std::cout << "======Test 1 (3x3 key) ======\nOriginal text:\n\t" << text
<< std::endl;
std::pair
ciphers::HillCipher::generate_keys(3, 0, 100);
matrix
matrix
// matrix
// std::cout << "Encryption key: \n" << ekey;
std::string gibberish = ciphers::HillCipher::encrypt_text(text, ekey);
std::cout << "Encrypted text:\n\t" << gibberish << std::endl;
// matrix
// std::cout << "Decryption key: \n" << dkey;
std::string txt_back = ciphers::HillCipher::decrypt_text(gibberish, dkey);
std::cout << "Reconstruct text:\n\t" << txt_back << std::endl;
std::ofstream out_file("hill_cipher_test1.txt");
out_file << "Block size: " << ekey.size() << "\n";
out_file << "Encryption Key:\n" << ekey;
out_file << "\nDecryption Key:\n" << dkey;
out_file.close();
assert(txt_back == text);
std::cout << "Passed :)\n";
}
/**
* @brief Self test 2 - using 8x8 randomly generated key
*
* @param text string to encrypt and decrypt
*/
void test2(const std::string &text) {
// std::string text = "Hello world!";
std::cout << "======Test 2 (8x8 key) ======\nOriginal text:\n\t" << text
<< std::endl;
std::pair
ciphers::HillCipher::generate_keys(8, 0, 3);
matrix
matrix
std::string gibberish = ciphers::HillCipher::encrypt_text(text, ekey);
std::cout << "Encrypted text:\n\t" << gibberish << std::endl;
std::string txt_back = ciphers::HillCipher::decrypt_text(gibberish, dkey);
std::cout << "Reconstruct text:\n\t" << txt_back << std::endl;
std::ofstream out_file("hill_cipher_test2.txt");
out_file << "Block size: " << ekey.size() << "\n";
out_file << "Encryption Key:\n" << ekey;
out_file << "\nDecryption Key:\n" << dkey;
out_file.close();
assert(txt_back.compare(0, text.size(), text) == 0);
std::cout << "Passed :)\n";
}
/** Main function */
int main() {
std::srand(std::time(nullptr));
std::cout << "Key dictionary: (" << std::strlen(ciphers::STRKEY) << ")\n\t"
<< ciphers::STRKEY << "\n";
std::string text = "This is a simple text with numb3r5 and exclamat!0n.";
test1(text);
test2(text);
return 0;
}
示例二:
用C++实现的简单示例:
#include
#include
std::string encrypt(const std::string& plaintext, const std::vector
std::string ciphertext;
int keySize = keyMatrix.size();
int blockSize = keySize;
int paddingSize = keySize - (plaintext.length() % keySize);
// 添加填充字符
for (int i = 0; i < paddingSize; i++) {
plaintext += 'X';
}
// 对明文进行分块加密
for (int i = 0; i < plaintext.length(); i += blockSize) {
std::vector
for (int j = i; j < i + blockSize; j++) {
block.push_back(plaintext[j] - 'A');
}
// 使用密钥矩阵进行乘法运算
std::vector
for (int k = 0; k < keySize; k++) {
for (int l = 0; l < keySize; l++) {
result[k] += keyMatrix[k][l] * block[l];
}
result[k] %= 26; // 取模操作,映射到字母表范围内
ciphertext += static_cast
}
}
return ciphertext;
}
std::string decrypt(const std::string& ciphertext, const std::vector
std::string plaintext;
int keySize = keyMatrix.size();
int blockSize = keySize;
// 对密文进行分块解密
for (int i = 0; i < ciphertext.length(); i += blockSize) {
std::vector
for (int j = i; j < i + blockSize; j++) {
block.push_back(ciphertext[j] - 'A');
}
// 使用逆矩阵进行乘法运算
std::vector
for (int k = 0; k < keySize; k++) {
for (int l = 0; l < keySize; l++) {
result[k] += keyMatrix[l][k] * block[l];
}
result[k] %= 26; // 取模操作,映射到字母表范围内
plaintext += static_cast
}
}
return plaintext;
}
int main() {
std::vector
{3, 2},
{5, 7}
};
std::string plaintext = "HELLO";
std::string ciphertext = encrypt(plaintext, keyMatrix);
std::string decryptedText = decrypt(ciphertext, keyMatrix);
std::cout << "Plaintext: " << plaintext << std::endl;
std::cout << "Ciphertext: " << ciphertext << std::endl;
std::cout << "Decrypted text: " << decryptedText << std::endl;
return 0;
}
这个示例使用2x2的矩阵作为密钥,对明文进行加密和解密操作。你可以根据需要修改矩阵的大小和明文的内容来进行扩展和测试。请注意,此示例中仅使用大写字母,并且未处理其他特殊字符。对于更复杂的需求,请根据需要修改实现。