- 深度学习PyTorch之数据加载DataLoader
@Mr_LiuYang
计算机视觉基础深度学习pytorch人工智能
深度学习pytorch之简单方法自定义9类卷积即插即用文章目录数据加载基础架构1、Dataset类详解2、DataLoader核心参数解析3、数据增强数据加载基础架构核心类关系图torch.utils.data├──Dataset(抽象基类)├──DataLoader(数据加载器)├──Sampler(采样策略)├──BatchSampler(批量采样)└──IterableDataset(流式数
- Web端测试时,接口返回200,页面有没显示,可能时什么原因?
海姐软件测试
测试工具面试职场和发展
需从系统架构、前后端交互、测试方法三个维度展开分析,结合具体场景给出可落地的排查方案:一、核心原因分析(按优先级排序)前端渲染异常JS脚本执行错误(如语法错误导致页面渲染中断)DOM元素未正确加载(XHR异步请求未完成时触发渲染)CSS样式冲突(display:none/visibility:hidden导致元素不可见)数据解析错误接口返回字段缺失(如缺少关键展示字段id)数据格式不符合预期(如字
- 模型上下文协议(MCP):构建 AI 与数据交互的新范式
xxgshxs
人工智能chatgptprompt文心一言llamacopilot
引言在人工智能领域,大型语言模型(LLMs)的应用正从通用问答向复杂任务执行演进,但数据孤岛、工具集成碎片化及隐私安全等问题制约了其潜力。模型上下文协议(ModelContextProtocol,MCP)作为Anthropic提出的开放标准,旨在通过标准化接口连接AI应用与异构数据源及工具,重塑AI开发范式。本文从技术架构、核心功能、应用场景等维度解析MCP的设计逻辑与实践价值。一、核心概念与设计
- Elasticsearch(ES)详解:从入门到实践
坚持蛊
elasticsearchjenkins大数据
引言简介:Elasticsearch是一个基于Lucene的分布式搜索引擎,具有高效的全文搜索功能,广泛应用于日志分析、搜索引擎、实时数据处理等领域。本文目标:介绍Elasticsearch的基本概念、架构设计、配置优化、常见应用以及实际案例,帮助开发者掌握ES1.Elasticsearch概述Elasticsearch的背景和发展历程核心功能:全文检索、分布式搜索、实时数据分析主要应用场景:日志
- INCA二次开发GUI实例化
智海行舟
python个人开发
【摘要】本文基于ETASINCA二次开发实践,深入探讨如何构建完整的自动化测试GUI系统。通过Python语言结合COM接口技术,实现从软件架构设计到功能模块开发的完整闭环,为汽车电子领域工程师提供可复用的开发范式。一、INCA二次开发技术背景1.1行业应用需求在汽车电子开发领域,ETASINCA作为行业标准标定工具,其自动化测试需求日益增长。传统的手动操作模式存在以下痛点:重复性操作耗时严重(单
- 【Spring】_Spring事务与事务传播机制
_周游
SpringJavaEE数据库sql
目录1.创建项目、数据库及MyBatis配置1.1创建数据库及java实体类1.2使用yml配置MyBatis1.3对应三层架构开发2.Spring编程式事务2.1编写UserController类2.2接口测试2.23关于事务回滚与事务提交的日志3.Spring声明式事务3.1编写TransController类3.2接口测试3.3关于@Transactional实现事务回滚的情况3.3.1重新
- 我与DeepSeek读《大型网站技术架构》(5)下
诺亚凹凸曼
架构
万无一失:网站的高可用架构4.高可用的数据保证数据存储高可用的手段主要是数据备份和失效转移机制。缓存服务的高可用争论1.缓存服务需要实现高可用核心论据:避免雪崩效应:缓存宕机导致数据库瞬时压力骤增,可能引发级联故障。提升用户体验:缓存直接支撑高频访问,其不可用会导致延迟飙升、功能异常。数据热备价值:部分缓存数据(如会话信息)可能无持久化备份,丢失后影响业务连续性。适用场景:高并发实时系统:如电商秒
- 我与DeepSeek读《大型网站技术架构》(3)
诺亚凹凸曼
架构
大型网站架构的核心要素《大型网站技术架构:核心原理与案例分析》第三章聚焦于大型网站架构的核心要素,从技术维度剖析了构建高可用、高性能、可扩展系统的关键设计方向。1.五大核心架构要素(1)性能(Performance)目标:快速响应用户请求,优化用户体验。关键策略:前端优化:CDN加速静态资源、合并压缩JS/CSS、浏览器缓存。服务端优化:缓存(Redis/Memcached)、异步处理(消息队列)
- 仅仅使用pytorch来手撕transformer架构(4):解码器和解码器模块类的实现和向前传播
KangkangLoveNLP
手撕系列#transformerpytorchtransformer人工智能深度学习python机器学习
仅仅使用pytorch来手撕transformer架构(4):解码器和解码器模块类的实现和向前传播仅仅使用pytorch来手撕transformer架构(1):位置编码的类的实现和向前传播最适合小白入门的Transformer介绍仅仅使用pytorch来手撕transformer架构(2):多头注意力MultiHeadAttention类的实现和向前传播仅仅使用pytorch来手撕transfor
- 云原生Serverless平台:无服务器计算的架构革命
桂月二二
云原生serverless架构
引言:从虚拟机到函数即服务(FaaS)AWSLambda每天处理数十万亿次请求,阿里巴巴函数计算支撑双十一亿级事件触发。KnativeServing实现秒级自动扩缩至零,Vercel边缘函数网络响应时间跌破50ms。CNCFOpenFaaS在GitHub斩获25k星,AzureFunctions支持毫秒级计费精度,GoogleCloudRun冷启动优化至200ms内。全球500强企业70%采用Se
- 麒麟arm架构系统_安装nginx-1.27.0_访问500 internal server error nginx解决_13: Permission denied---Linux工作笔记072
添柴程序猿
javanginx-1.27.0nginx最新版安装麒麟v10arm架构麒麟v10安装nginx
[
[email protected]]#wget-chttp://nginx.org/download/nginx-1.27.0.tar.gz--2024-07-0509:47:00--http://nginx.org/download/nginx-1.27.0.tar.gzResolvingnginx.org(nginx.org)...3.125.197.172,52.58.19
- 探讨消息队列系统:AWS SQS vs. Apache Kafka
fxrz12
工具awsapachekafka
在现代软件架构中,消息队列系统扮演着关键角色,帮助系统实现异步通信、负载均衡和解耦。两种广泛使用的消息队列系统是AWSSimpleQueueService(SQS)和ApacheKafka。尽管它们都提供消息传递功能,但在设计理念、功能和使用场景上存在显著差异。本文将详细探讨AWSSQS和ApacheKafka的特点,帮助你在不同场景下做出最佳选择。一、ApacheKafkaApacheKafka
- Zookeeper与Kafka学习笔记
上海研博数据
zookeeperkafka学习
一、Zookeeper核心要点1.核心特性分布式协调服务,用于维护配置/命名/同步等元数据采用层次化数据模型(Znode树结构),每个节点可存储<1MB数据典型应用场景:HadoopNameNode高可用HBase元数据管理Kafka集群选举与状态管理2.设计限制内存型存储,不适合大数据量场景数据变更通过版本号(Version)控制,实现乐观锁机制采用ZAB协议保证数据一致性二、Kafka核心架构
- 数字IC前端设计究竟怎样?薪资前景如何?
IC观察者
fpga开发集成电路模拟IC模拟版图模拟版图入门
数字ic前端岗位介绍:数字ic前端设计处于数字IC设计流程的前端,属于数字IC设计类岗位的一种。数字ic前端设计主要分成几种层次的设计:IPlevel,unitlevel,fullchip/SoClevel,gatelevel等。作为数字IC前端工程师,为了让写的RTL代码没有bug,会经常与验证工程师要求debugcase;为了了解芯片整体架构和功能属性,还要与架构工程师打交道;还要与后端工程师
- PHP的架构设计
weixin_34294649
php
首先,大概陈述一下架构的关联,如下所述:首先会先设计标准DALclass(STDAL),放置getData,delete,update等标准常见的功能函数在来设计程式会用到的各种DAL,基本上每一个Table都需要有一个DAL来实现,后面根据table应用、画面呈现等需求,也可以一个table有多个DAL,这各观念类似View的概念。根据商业逻辑的操作,制作对应的BLL,像是insert、upda
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 大语言模型(LLM)入门学习路线图_llm教程,从零基础到精通,理论与实践结合的最佳路径!
AGI学习社
语言模型学习人工智能LLM大模型大数据自然语言处理
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。大语言模型(LargeLanguageM
- 一文理清概念:数据中台(DMP)-数据仓库(DW)-数据湖(DL)-湖仓一体-数据治理(DG)
Debug_Snail
HadoopBigDataDataScience数据仓库大数据数据中台数据湖数据治理
数据仓库、数据中台、数据湖、湖仓一体是数据管理和分析领域的重要概念,它们在功能、架构和应用场景上各有特点,同时也在演进中相互关联和补充。以下是对它们的定义和关系的详细解析:1.核心概念(1)数据仓库(DataWarehouse,DW)定义:一种面向主题的、集成的、稳定的数据存储系统,用于支持企业决策分析(如BI、报表)。数据通常经过ETL(抽取、转换、加载)处理,以结构化形式存储,采用Schema
- Spring IOC 容器核心功能解析与优化架构
我不是少爷.
Java基础spring架构java
一、IOC容器创建Bean的四种方式1.1普通创建方式使用场景:直接通过类默认构造器创建对象实现步骤:代码说明:id:Bean的唯一标识符class:指定类的全限定名Spring会调用默认无参构造器实例化对象1.2工厂模式创建使用场景:需要工厂类处理复杂初始化逻辑时实现步骤://工厂类publicclassBookFactory{publicBookcreateBook(){returnnewBo
- java面试题框架篇
老汤姆.
面试javaspringboot开发语言
文章目录1.Spring框架1.1Spring两大核心:IOC与AOPIOCDIAOP切面=切入点表达式+通知方法关于JDK代理和CGlib代理总结(高程/架构)!!!AOP常用注解1.2BeanFactory(懒加载初始bean)和ApplicationContext(立即初始bean)有什么区别1.3Spring框架用到了哪些设计模式1.4spring框架的优缺点1.5Spring常用注解2.
- 四种主要的 API 架构风格:RPC、SOAP、REST、GRAPHQL
小马不敲代码
系统设计架构rpcgraphql
讨论四种主要的API架构风格,比较它们的优缺点,并重点介绍每种情况下最适合的API架构风格。RPCSOAPRESTGRAPHQL两个单独的应用程序需要中介程序才能相互通信,因此,开发人员经常需要搭建桥梁——也就是应用程序编程接口(API),来允许一个系统访问另一个系统的信息或功能。为了快速、大规模地集成不同的应用程序,API使用协议或规范来定义那些通过网络传输的消息的语义和信息。这些规范构成了AP
- ARM64环境部署EFK8.15.3收集K8S集群容器日志
llody_55
kubernetes容器云原生运维esjavaelasticsearch
环境规划主机IP系统部署方式ES版本CPU架构用户名密码192.168.1.225Ubuntu22.04.4LTSdockerelasticsearch:8.15.3ARM64elasticllodyi4TMmZDES集群部署创建持久化目录(所有节点)mkdir-p/data/es/{data,certs,logs,plugins}mkdir-p/data/es/certs/{ca,es01}服务
- 《Natural Actor-Critic》译读笔记
songyuc
笔记
《NaturalActor-Critic》摘要本文提出了一种新型的强化学习架构,即自然演员-评论家(NaturalActor-Critic)。Theactor的更新通过使用Amari的自然梯度方法进行策略梯度的随机估计来实现,而评论家则通过线性回归同时获得自然策略梯度和价值函数的附加参数。本文展示了使用自然策略梯度的actor改进特别有吸引力,因为这些梯度与所选策略表示的坐标框架无关,并且比常规策
- Linux基础——操作系统(OS)、操作系统内核(Kernel)和Shell
D3Zane
Linux基础linux
文章目录前言一、操作系统(OS)和操作系统内核(Kernel)1.操作系统架构2.内核在操作系统中的具体位置二、了解Shell1.Shell是什么?2.Shell的类型3.Shell的功能?4.Shell的工作原理?5.Shell示例三、Linux命令的执行的过程(原理)总结前言首先,先向Linux创始人LinusTorvalds以及Linux的整个开源社区致敬,没有Linus的Linux内核,没
- 基于STM32+物联网设计的浇花神器(华为云IoT)
鱼弦
单片机系统合集stm32物联网华为云
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)基于STM32+物联网设计的浇花神器(华为云IoT)介绍基于STM32+物联网的浇花神器利用传感器采集土壤湿度数据,通过华为云物联网平台将数据发送到云端,并根
- 什么是SaaS化部署
LCY133
阿里云
SaaS化部署是将传统软件转变为“软件即服务”(SoftwareasaService,SaaS)模式的过程。其核心是通过云端托管、多租户架构和按需订阅的方式,让用户通过互联网直接使用软件功能,无需自行安装和维护本地服务器。以下是详细解析:核心特点云端托管•软件部署在云端服务器(如AWS、阿里云),用户通过浏览器或API访问。•优势:无需本地硬件投入,降低运维成本。多租户架构(Multi-tenan
- 内容中台的核心架构是什么?
清风徐徐de来
其他
模块化架构设计解析内容中台的模块化架构通过分层解耦实现灵活扩展,其核心由基础资源层、能力服务层与业务应用层构成。基础层以统一数据治理体系为支撑,通过标准化接口实现结构化与非结构化数据的统一存储,例如Baklib采用分布式存储架构保障数据安全性与访问效率。服务层整合智能分发引擎与API协同策略,支持动态编排内容处理流程,如自动标签生成与多版本管理。应用层通过可配置化组件对接多终端场景,确保知识库构建
- 数据分析与AI丨AI Fabric:数据和人工智能架构的未来
Altair澳汰尔
数据分析aiRapidMiner知识图谱人工智能
AIFabric架构是模块化、可扩展且面向未来的,是现代商业环境中企业实现卓越的关键。在当今商业环境中,数据分析和人工智能领域发展可谓日新月异。几乎每天都有新兴技术诞生,新的应用场景不断涌现,前沿探索持续拓展。可遗憾的是,众多企业在利用数据和人工智能方面,脚步总是滞后。这是每个行业进行创新和获得竞争优势的冲刺阶段,但正如大多数企业时常感受到的那样,大规模实施下一代数据和AI工具说起来容易做起来难。
- XML Schema
weixin_43980049
Java初识XMLXMLSchema
一、XMLSchema简介XMLSchema或XMLSchemaDefinition(XSD)可扩展标记语言架构:是以可扩展标记语言(标准通用标记语言的子集)为基础的,它用于可替代文档类型定义(外语缩写:XSD);一份XMLschema文件描述了可扩展标记语言文档的结构。1.定义编辑它的作用是定义一份XML文档的合法组件群,就像文档类型定义(外语缩写:DTD)的作用一样,一份XMLSchema定义
- 大语言模型原理基础与前沿 双层路由多模态融合、多任务学习和模块化架构
AI智能涌现深度研究
AI大语言模型和知识图谱融合Python入门实战DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿:双层路由多模态融合、多任务学习和模块化架构关键词:大语言模型、双层路由、多模态融合、多任务学习、模块化架构、神经网络、自然语言处理1.背景介绍大语言模型(LargeLanguageModels,LLMs)已经成为人工智能和自然语言处理领域的重要研究方向。随着GPT-3、BERT等模型的出现,大语言模型在各种任务中展现出了惊人的性能。然而,随着模型规模的不断扩大和应用场景的
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理