前面已经学习过线性模型相关的内容,实现线性模型的过程并没有使用到Pytorch。
这节课主要是利用Pytorch实现线性模型。
学习器训练:
之前用过Pytorch的Tensor进行Forward、Backward计算。
现在利用Pytorch框架来实现。
在PyTorch中计算图是通过mini-batch形式进行,所以X、Y都是多维的Tensor。
import torch
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
在之前讲解梯度下降算法时,我们需要自己计算出梯度,然后更新权重。
而使用Pytorch构造模型,重点时在构建计算图和损失函数上。
通过构造一个 class LinearModel类来实现,所有的模型类都需要继承nn.Module,这是所有神经忘了模块的基础类。
class LinearModel这种定义的模型类必须包含两个部分:
def __init__(self):
super(LinearModel, self).__init__()#调用父类构造函数,不用管,照着写。
# torch.nn.Linear(in_featuers, in_featuers)构造Linear类的对象,其实就是实现了一个线性单元
self.linear = torch.nn.Linear(1, 1)
Class nn.Linear 实现了magic method call():它使类的实例可以像函数一样被调用。通常会调用forward()。
def forward(self, x):
y_pred = self.linear(x)#调用linear对象,输入x进行预测
return y_pred
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel, self).__init__()#调用父类构造函数,不用管,照着写。
# torch.nn.Linear(in_featuers, in_featuers)构造Linear类的对象,其实就是实现了一个线性单元
self.linear = torch.nn.Linear(1, 1)
def forward(self, x):
y_pred = self.linear(x)#调用linear对象,输入x进行预测
return y_pred
model = LinearModel()#实例化LinearModel()
采用MSE作为损失函数
torch.nn.MSELoss(size_average,reduce)
SGD作为优化器torch.optim.SGD(params, lr):
criterion = torch.nn.MSELoss(size_average=False)#size_average:the losses are averaged over each loss element in the batch.
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)#params:model.parameters(): w、b
#4. Training Cycle
for epoch in range(100):
y_pred = model(x_data)#Forward:预测
loss = criterion(y_pred, y_data)#Forward:计算loss
print(epoch, loss)
optimizer.zero_grad()#梯度清零
loss.backward()#backward:计算梯度
optimizer.step()#通过step()函数进行参数更新
# Output weight and bias
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())
# Test Model
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
import torch
#1. Prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
#2. Design Model
class LinearModel(torch.nn.Module):
def __init__(self):
super(LinearModel, self).__init__()#调用父类构造函数,不用管,照着写。
# torch.nn.Linear(in_featuers, in_featuers)构造Linear类的对象,其实就是实现了一个线性单元
self.linear = torch.nn.Linear(1, 1)
def forward(self, x):
y_pred = self.linear(x)#调用linear对象,输入x进行预测
return y_pred
model = LinearModel()#实例化LinearModel()
# 3. Construct Loss and Optimize
criterion = torch.nn.MSELoss(size_average=False)#size_average:the losses are averaged over each loss element in the batch.
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)#params:model.parameters(): w、b
#4. Training Cycle
for epoch in range(100):
y_pred = model(x_data)#Forward:预测
loss = criterion(y_pred, y_data)#Forward:计算loss
print(epoch, loss)
optimizer.zero_grad()#梯度清零
loss.backward()#backward:计算梯度
optimizer.step()#通过step()函数进行参数更新
# Output weight and bias
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())
# Test Model
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
输出结果:
85 tensor(0.2294, grad_fn=)
86 tensor(0.2261, grad_fn=)
87 tensor(0.2228, grad_fn=)
88 tensor(0.2196, grad_fn=)
89 tensor(0.2165, grad_fn=)
90 tensor(0.2134, grad_fn=)
91 tensor(0.2103, grad_fn=)
92 tensor(0.2073, grad_fn=)
93 tensor(0.2043, grad_fn=)
94 tensor(0.2014, grad_fn=)
95 tensor(0.1985, grad_fn=)
96 tensor(0.1956, grad_fn=)
97 tensor(0.1928, grad_fn=)
98 tensor(0.1900, grad_fn=)
99 tensor(0.1873, grad_fn=)
w = 1.711882472038269
b = 0.654958963394165
y_pred = tensor([[7.5025]])
可以看到误差还比较大,可以增加训练轮次,训练1000次后的结果:
980 tensor(2.1981e-07, grad_fn=)
981 tensor(2.1671e-07, grad_fn=)
982 tensor(2.1329e-07, grad_fn=)
983 tensor(2.1032e-07, grad_fn=)
984 tensor(2.0737e-07, grad_fn=)
985 tensor(2.0420e-07, grad_fn=)
986 tensor(2.0143e-07, grad_fn=)
987 tensor(1.9854e-07, grad_fn=)
988 tensor(1.9565e-07, grad_fn=)
989 tensor(1.9260e-07, grad_fn=)
990 tensor(1.8995e-07, grad_fn=)
991 tensor(1.8728e-07, grad_fn=)
992 tensor(1.8464e-07, grad_fn=)
993 tensor(1.8188e-07, grad_fn=)
994 tensor(1.7924e-07, grad_fn=)
995 tensor(1.7669e-07, grad_fn=)
996 tensor(1.7435e-07, grad_fn=)
997 tensor(1.7181e-07, grad_fn=)
998 tensor(1.6931e-07, grad_fn=)
999 tensor(1.6700e-07, grad_fn=)
w = 1.9997280836105347
b = 0.0006181497010402381
y_pred = tensor([[7.9995]])