- 三大范式,让数据库更规范、高效!
码熔burning
MySQL数据库数据库mysql
目录一、为什么要使用范式?二、第一范式(1NF)三、第二范式(2NF)四、第三范式(3NF)五、总结我的其他文章也讲解的比较有趣,如果喜欢博主的讲解方式,可以多多支持一下,感谢!了解MVCC请看:MVCC:多版本并发控制,让数据“时光倒流”的秘密!其他优质专栏:【SpringBoot】【多线程】【Redis】【✨设计模式专栏(已完结)】…等如果喜欢作者的讲解方式,可以点赞收藏加关注,你的支持就是我
- 本地大模型-使用Open WebUI页面关联Ollama和Stable Diffusion可视化问答及画图/Ollama常用命令
瑶山
AI学习指南pythonOllama本地大模型
目录下载地址安装关联Ollama关联StableDiffusion效果下载地址GitHub-open-webui/open-webui:User-friendlyAIInterface(SupportsOllama,OpenAIAPI,...)安装可以使用docker,安装更方便dockerrun-d-p3450:8080--add-host=host.docker.internal:host-g
- 【开源项目】2024最新PHP在线客服系统源码/带预知消息/带搭建教程
于飞SEO
免费资源分享开源php开发语言
简介随着人工智能技术的飞速发展,AI驱动的在线客服系统已经成为企业提升客户服务质量和效率的重要工具。本文将探讨AI在线客服系统的理论基础,并展示如何使用PHP语言实现一个简单的AI客服系统。源码仓库地址:ym.fzapp.top在线客服系统的理论基础AI在线客服系统通过自然语言处理(NLP)、机器学习(ML)和深度学习(DL)技术,能够理解和响应客户的查询。这些系统通常包括以下几个关键组件:自然语
- 基于CNN-BIGRU-Attention模型的功率预测(模型详解及代码复现)
清风AI
深度学习算法详解及代码复现深度学习人工智能算法机器学习计算机视觉cnn神经网络
整体架构基于CNN-BiGRU-Attention模型的功率预测模型是一种融合了卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)的深度学习架构。这种混合模型旨在充分利用CNN的局部特征提取能力、BiGRU的长序列处理能力以及Attention机制的关键特征突出能力,从而提高功率预测的准确性和可靠性。模型的整体架构主要包括以下几个关键组件:输入层:设计的输入特
- 『大模型笔记』强烈推荐OpenAI官方:推理模型最佳实践!
AI大模型前沿研究
大模型笔记人工智能OpenAI推理模型GPTGPTo1GPTo3ChatGPT
『大模型笔记』强烈推荐OpenAI官方:推理模型最佳实践!文章目录一.OpenAI官方:推理模型最佳实践推理模型vs.GPT模型选择指南二.何时使用我们的推理模型1.处理模糊不清的任务2.从海量信息中精准提取关键信息3.在海量数据集中发现关系和细微差别4.多步骤自主规划5.视觉推理6.代码审查、调试与质量提升7.评估与基准测试其他模型的响应如何有效提示推理模型其他资源一.OpenAI官方:推理模型
- Docker+Ollama+RAGFlow本地部署DeepSeek R1并构建本地知识库
康顺哥
AI大模型#docker容器llama语言模型aiAI编程
目录背景安装Docker设置Docker默认参数修改Docker保存服务程序的缓存路径为服务程序镜像设置别名为ollama设置专用参数安装ollama运行DeepSeekR1大模型安装Open-WebUI配置Open-WebUI检验DeepSeek的资源占用情况安装RAGFlow添加chat模型添加embedding模型创建知识库AI结合知识库聊天总结背景DeepSeek持续火爆,但官网访问经常出
- 【网络编程】select模型
浅慕Antonio
网络编程网络c++
十、基于I/O模型的网络开发接着上次的博客继续分享:基于I/O模型的网络开发10.7选择模型10.7.1基本概念选择(select)模型是一种比较常用的I/O模型。利用该模型可以使Windowssocket应用程序同时管理多个套接字。使用select模型,可以使当执行操作的套接字满足可读可写条件时给应用程序发送通知。收到这个通知后,应用程序再去调用相应的WindowssocketAPI去执行函数调
- 【AI大模型应用开发】Moonshot API 入门,完全平替 OpenAI API ?
同学小张
大模型人工智能经验分享笔记AIGCgptagiMoonshot
大家好,我是同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。月之暗面(moonshot)最近很火呀,本文我们紧跟一下实事,看下MoonshotAI的API调用,以及在LangChain中如何使用。文章目录0.前期准备1.基本使用2.工具使用3.LangChain中使用3.1使用MoonshotChat3.2使用ChatOpenAI4.Lang
- 文生图 图生视频 文生视频人工智能AI工具节选
行思理
AI人工智能文生图文生视频图生视频数字人
1、MidjourneyAI图像和插画生成工具,官网地址:Midjourney中文站,MJ中文站-专业AI绘图网站2、StableDiffusion一种基于扩散技术的深度学习文本转图像模型,演示地址:StabilityAI3、通义万相阿里云通义大模型旗下的AI创意作画与视频生成平台,官网地址:通义万相_AI创意作画_AI绘画_人工智能-阿里云4、PhotoStudioAI模特AI商品图及视频一键生
- ChatGPT-4o引领医学革命:临床科研创新与效率的新纪元
小艳加油
教程语言类人工智能数据分析ChatGPT-4o临床医学
2024年5月12日,更强版本的ChatGPT-4o上线,文本、语音、图像等多模态交互方式使其在各行各业的应用呈现了更多的可能性。因此,帮助广大临床医学相关的医院管理人员、医生、学生、科研人员更加熟练地掌握ChatGPT-4o在临床医学日常生活、工作与学习、课题申报、论文选题、实验方案设计、实验数据统计分析与可视化等方面的强大功能,同时更加系统地学习人工智能(包括传统机器学习、深度学习等)的基础理
- SpringBoot使用注解扫描注册Java Web三大组件
呆萌很
springbootspringboot
使用注解扫描和注册JavaWeb三大组件(Servlet、Filter、Listener)非常方便。1.Servlet注册Servlet是JavaWeb开发的基础组件,用于处理客户端(通常是浏览器)发送的HTTP请求并生成响应。Controller是基于Servlet的封装。可以通过@WebServlet注解来注册Servlet,并使用@ServletComponentScan注解来扫描这些Ser
- 毕业论文查重六大误区,你踩坑了吗?
kexiaoya2013
论文笔记论文阅读
又到毕业季了,论文查重也成了无数同学的一块心病。有人熬夜改稿到崩溃,有人查重报告看懵圈,其实,很多焦虑都源于对查重的误解!那么,今天我们就来扒一扒那些年你踩过的查重坑,看完这篇保你少走弯路!误区一:认为重复率低就绝对安全查重系统本质上就是一个算法程序,它只能机械的比对文字相似度,根本看不懂你论文的学术价值。所以除了重复率符合学校标准外,同时还要确保内容的原创性和逻辑性合理。误区二:只用一个查重软件
- Manus:通用型Agent的技术革新与多元应用场景
蚂蚁质量
其他python深度学习
一、Manus前沿洞察Manus,作为Monica团队匠心打造的全球首款通用型Agent产品,名称源于拉丁文“mensetmanus”,意即“手”,深刻寓意着知识与行动的深度融合。其核心理念独树一帜,旨在为大语言模型(LLM)赋予“手”的能力,使其借助工具调用与任务执行,将抽象知识转化为切实可行的实际操作,开启人工智能应用的崭新时代。二、精巧技术架构Manus的技术架构兼具高度灵活性与卓越扩展性,
- AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能
AIGC从入门到实战:ChatGPT+Midjourney,绘出中国古风意境之美关键词:AI生成内容(AIGC),ChatGPT,Midjourney,中国古风,创意设计,艺术表达1.背景介绍1.1问题由来人工智能生成内容(ArtificialIntelligenceGeneratedContent,AIGC)作为AI技术的重要分支,近年来在视觉、音乐、文本等多个领域取得了显著进展,引领了内容创作
- 人工智能引领技术革命:ChatGPT与深度学习的突破性进展
撒旦骑路西法,大战吕布
国内外安全资讯人工智能
在全球科技快速发展的今天,人工智能(AI)正以前所未有的速度渗透到各个行业,成为推动社会变革的重要力量。特别是在自然语言处理(NLP)领域,OpenAI的ChatGPT凭借深度学习技术的持续突破,展现了AI在理解、推理、对话生成等方面的惊人进步。本文将深入探讨ChatGPT及深度学习的最新突破,以及它对不同行业的深远影响。1.ChatGPT:AI语言模型的革新者1.1什么是ChatGPT?Chat
- langchain4j+ONNX小试牛刀
langchain4j
序本文主要研究一下langchain4j结合ONNX进行得分重排步骤pom.xmldev.langchain4jlangchain4j-onnx-scoring1.0.0-beta1下载模型wgethttps://hf-mirror.com/Xenova/ms-marco-MiniLM-L-6-v2/resolve/main/onnx/model_quantized.onnx?download=t
- 《即梦牵手DeepSeek,AI创作领域的变革与未来》
空云风语
人工智能人工智能
《即梦牵手DeepSeek,AI创作领域的变革与未来》开篇:科技融合,梦想启航在当今科技飞速发展的时代,人工智能(AI)无疑是最为耀眼的领域之一。新的技术和创新不断涌现,推动着AI行业的边界持续拓展。近期,AI领域又迎来了一个令人瞩目的大事件:即梦正式接入DeepSeek,这一强强联合的举措,犹如一颗投入湖面的巨石,激起千层浪,在整个AI行业引发了广泛关注和热烈讨论。即梦,作为字节跳动旗下极具创新
- OpenAI O1在跨语言生成中的应用:从多语言处理到文化适应性
喵手
AIGCAIGC
全文目录:开篇语前言目录1.OpenAIO1的多语言生成技术概述O1模型的架构大规模预训练与迁移学习2.O1如何处理语言文化差异语言的隐性差异与文化背景文化敏感内容生成3.O1在多语言环境中的应用跨语言生成自动翻译与多语言理解全球化内容创作4.O1在全球化内容创作中的作用多语言营销与定制化内容本地化与个性化创作5.自动翻译与跨语言理解的前景6.总结与未来展望文末开篇语哈喽,各位小伙伴们,你们好呀,
- 【论文阅读】LayoutPrompter: Awaken the Design Ability of Large Language Models
进击的乔洋
论文阅读语言模型人工智能
LayoutPrompter:AwakentheDesignAbilityofLargeLanguageModelsabstract条件图形布局生成是一种自动将用户约束映射为高质量布局的技术,目前受到了广泛关注。尽管最近的工作取得了很好的性能,但缺乏通用性和数据效率阻碍了它们的实际应用。本文提出Layout-Prompter,利用大型语言模型(llm)通过上下文学习来解决上述问题。LayoutPr
- 使用 llama.cpp 框架进行 RWKV 模型的推理
步子哥
AGI通用人工智能llama人工智能
欢迎来到RWKV推理文档的世界!在这里,我们将一起探索如何使用llama.cpp框架进行RWKV模型的推理,仿佛在进行一场科技的冒险之旅。准备好了吗?让我们一起揭开神秘的面纱吧!什么是llama.cpp?Llama.cpp是一个轻量化的大语言模型运行框架,专门为在CPU上优化模型性能而设计。如果你曾经觉得CPU的处理速度像在慢动作中走路,那么你一定会喜欢这个工具!它让RWKV-6模型的运行像一阵微
- 【GPT入门】第10课 FunctionCalling介绍
*星星之火*
大模型gpt
【GPT入门】第10课FunctionCalling介绍1.大模型的两大缺陷导致需要连接外部世界2.FunctionCalling介绍3.functionCalling的感性认识1.大模型的两大缺陷导致需要连接外部世界大模型存在两大显著缺陷:一、知识储备存在局限性一方面,大模型并非全知全能。其训练数据无法涵盖世间所有信息,尤其是在垂直领域以及非公开数据方面,必然存在缺失。另一方面,大模型难以掌握最
- 大模型与Java的深度融合:现状、实践、挑战与未来
软件职业规划
java开发语言
一、引言:大模型与Java的交汇近年来,大模型技术在人工智能领域迅速崛起,成为推动智能应用发展的核心力量。与此同时,Java作为一种历史悠久且广泛应用于企业级开发的编程语言,凭借其强大的生态系统、跨平台特性和稳定性,一直是软件开发领域的中流砥柱。随着大模型技术的普及,Java与大模型的结合成为了一个备受关注的热点话题。这种结合不仅为Java开发者带来了新的机遇,也为大模型的落地应用提供了更广阔的场
- 深入探索Deeplearning4j(DL4J):Java深度学习的全面指南
软件职业规划
java深度学习开发语言
一、DL4J框架概述Deeplearning4j(DL4J)是一个开源的深度学习框架,专为Java和Scala设计,运行在Java虚拟机(JVM)上。它由Skymind公司开发并维护,旨在将深度学习技术应用于大规模商业应用。DL4J支持多种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。自2014年首次发布以来,DL4J已经成为Java深度学习领域的
- Datawhale AI夏令营第四期 AIGC方向 task02学习笔记
流火_授衣
AI人工智能AIGC学习
探探前沿:了解一下AI生图技术的能力&局限今天我们的任务是对baseline的代码有一个更加细致的理解,然后我们会学习如何借助AI来提升我们的自学习能力,从而帮助大家在后面的学习工作中如何从容迎接各种挑战。授人以鱼不如授人以渔,你可以从中学大模型的提问技巧来实现快速学习,学会如何制作一个话剧连环画。‘自其不变者而观之,则物与我皆无尽也’,拥抱AI、学习AI、运用AI解决各种变化的问题,一起加油!!
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 【开题报告】springboot基于B_S架构的视频监控系统的设计与实现4jbbp计算机毕设
卓越计算机毕设
springboot架构课程设计
本项目包含程序+源码+数据库+LW+调试部署环境,文末可获取一份本项目的java源码和数据库参考。开题报告研究背景:随着社会的发展和科技的进步,视频监控系统在各个领域得到了广泛应用。传统的视频监控系统往往采用集中式架构,存在着诸多问题,如单点故障、带宽消耗大、实时性差等。为了解决这些问题,基于B/S架构的视频监控系统应运而生。研究意义:基于B/S架构的视频监控系统具有分布式部署、易于维护、资源共享
- 可解释性机器学习——从金融科技视角(1)
flex_university
可解释性机器学习与金融科技机器学习深度学习金融
可解释性机器学习——从金融科技视角(1)内容摘要:可解释性的重要性文章目录可解释性机器学习——从金融科技视角(1)1、过程为什么重要2、可解释性机器学习模型能做到什么3、什么时候不需要可解释性1、过程为什么重要尽管机器学习模型表现良好,但单一指标(如分类准确性)是对大多数实际任务的不完整表述。(Doshi-Velez&Kim2017)。某些任务不仅需要得到预测结果,更需要解释模型是如何得出预测的。
- 基于Pytorch的语音情感识别系统
鱼弦
人工智能时代pytorch人工智能python
基于Pytorch的语音情感识别系统介绍语音情感识别(SpeechEmotionRecognition,SER)是指通过分析和处理人的语音信号来识别其情感状态。常见的情感状态包括愤怒、喜悦、悲伤、惊讶等。基于Pytorch的语音情感识别系统使用深度学习技术,通过训练神经网络模型来实现情感识别任务。应用使用场景客户服务中心:自动识别客户情绪,提供有针对性的服务。智能语音助手:提升人机交互体验,更加智
- 大规模语言模型构建流程
人工智能技术笔记
语言模型人工智能自然语言处理
大规模语言模型1.大语言模型大规模语言模型(LargeLanguageModels,LLM),也称大语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,通常使用自监督学习方法通过大量无标注文本进行训练。2.预训练语言模型受到计算机视觉领域采用ImageNet对模型进行一次预训练,使得模型可以通过海量图像充分学习如何提取特征,然后再根据任务目标进行模型精调的预训练范式影响,自然语言处理
- 4.5 将关系字段添加到模型
山上春
服务器linuxpython
在Odoo模型中添加关系字段的全面解析在Odoo开发中,模型之间的关系处理至关重要。关系字段能够有效地建立起不同模型之间的联系,使数据的组织和交互更加合理、高效。今天,我们就深入探讨如何在Odoo模型中添加关系字段。一、关系字段类型概述Odoo模型中的关系字段主要有三种类型:(一)many-to-one(m2o)表示多个记录关联到一个记录。例如,在宿舍管理系统中,一个房间属于一个宿舍,这种关系就是
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置