C#实现所有经典排序算法汇总



C#实现所有经典排序算法
1、选择排序

class SelectionSorter    

{    

    private int min;    

    public void Sort(int[] arr)    

    {    

        for (int i = 0; i < arr.Length - 1; ++i)    

        {    

            min = i;    

            for (int j = i + 1; j < arr.Length; ++j)    

            {    

                if (arr[j] < arr[min])    

                    min = j;    

            }    

            int t = arr[min];    

            arr[min] = arr[i];    

            arr[i] = t;    

        }    

    }    

 } 
View Code

2、冒泡排序

class EbullitionSorter    

{    

    public void Sort(int[] arr)    

    {    

        int i, j, temp;    

        bool done = false;    

        j = 1;    

        while ((j < arr.Length) && (!done))//判断长度    

        {    

            done = true;    

            for (i = 0; i < arr.Length - j; i++)    

            {    

                if (arr[i] > arr[i + 1])    

                {    

                    done = false;    

                    temp = arr[i];    

                    arr[i] = arr[i + 1];//交换数据    

                    arr[i + 1] = temp;    

                }    

            }    

            j++;    

        }    

    }      

} 
View Code

3、快速排序

class QuickSorter    

{    

    private void swap(ref int l, ref int r)    

    {    

        int temp;    

        temp = l;    

        l = r;    

        r = temp;    

    }    

    public void Sort(int[] list, int low, int high)    

    {    

        int pivot;//存储分支点    

        int l, r;    

        int mid;    

        if (high <= low)    

            return;    

        else if (high == low + 1)    

        {    

            if (list[low] > list[high])    

                swap(ref list[low], ref list[high]);    

            return;    

        }    

        mid = (low + high) >> 1;    

        pivot = list[mid];    

        swap(ref list[low], ref list[mid]);    

        l = low + 1;    

        r = high;    

        do   

        {    

        while (l <= r && list[l] < pivot)    

            l++;    

        while (list[r] >= pivot)    

            r--;    

            if (l < r)    

                swap(ref list[l], ref list[r]);    

        } while (l < r);    

        list[low] = list[r];    

        list[r] = pivot;    

        if (low + 1 < r)    

            Sort(list, low, r - 1);    

        if (r + 1 < high)    

            Sort(list, r + 1, high);    

    }      

}    

4、插入排序 

public class InsertionSorter    

{    

    public void Sort(int[] arr)    

    {    

        for (int i = 1; i < arr.Length; i++)    

        {    

            int t = arr[i];    

            int j = i;    

            while ((j > 0) && (arr[j - 1] > t))    

            {    

                arr[j] = arr[j - 1];//交换顺序    

                --j;    

            }    

            arr[j] = t;    

        }    

    }     

} 

5、希尔排序 

public class ShellSorter    

{    

    public void Sort(int[] arr)    

    {    

        int inc;    

        for (inc = 1; inc <= arr.Length / 9; inc = 3 * inc + 1) ;    

        for (; inc > 0; inc /= 3)    

        {    

            for (int i = inc + 1; i <= arr.Length; i += inc)    

            {    

                int t = arr[i - 1];    

                int j = i;    

                while ((j > inc) && (arr[j - inc - 1] > t))    

                {    

                    arr[j - 1] = arr[j - inc - 1];//交换数据    

                    j -= inc;    

                }    

                arr[j - 1] = t;    

            }    

        }    

    }   

}  

6、归并排序

     /// <summary>

        /// 归并排序之归:归并排序入口

        /// </summary>

        /// <param name="data">无序的数组</param>

        /// <returns>有序数组</returns>

        /// <author>Lihua(www.zivsoft.com)</author>

        int[] Sort(int[] data)

        {

            //取数组中间下标

            int middle = data.Length / 2;

            //初始化临时数组let,right,并定义result作为最终有序数组

            int[] left = new int[middle], right = new int[middle], result = new int[data.Length];

            if (data.Length % 2 != 0)//若数组元素奇数个,重新初始化右临时数组

            {

                right = new int[middle + 1];

            }

            if (data.Length <= 1)//只剩下1 or 0个元数,返回,不排序

            {

                return data;

            }

            int i = 0, j = 0;

            foreach (int x in data)//开始排序

            {

                if (i < middle)//填充左数组

                {

                    left[i] = x;

                    i++;

                }

                else//填充右数组

                {

                    right[j] = x;

                    j++;

                }

            }

            left = Sort(left);//递归左数组

            right = Sort(right);//递归右数组

            result = Merge(left, right);//开始排序

            //this.Write(result);//输出排序,测试用(lihua debug)

            return result;

        }

        /// <summary>

        /// 归并排序之并:排序在这一步

        /// </summary>

        /// <param name="a">左数组</param>

        /// <param name="b">右数组</param>

        /// <returns>合并左右数组排序后返回</returns>

        int[] Merge(int[] a, int[] b)

        {

            //定义结果数组,用来存储最终结果

            int[] result = new int[a.Length + b.Length];

            int i = 0, j = 0, k = 0;

            while (i < a.Length && j < b.Length)

            {

                if (a[i] < b[j])//左数组中元素小于右数组中元素

                {

                    result[k++] = a[i++];//将小的那个放到结果数组

                }

                else//左数组中元素大于右数组中元素

                {

                    result[k++] = b[j++];//将小的那个放到结果数组

                }

            }

            while (i < a.Length)//这里其实是还有左元素,但没有右元素

            {

                result[k++] = a[i++];

            }

            while (j < b.Length)//右右元素,无左元素

            {

                result[k++] = b[j++];

            }

            return result;//返回结果数组

        }

注:此算法由周利华提供(http://www.cnblogs.com/architect/archive/2009/05/06/1450489.html 

7、基数排序

  //基数排序

        public int[] RadixSort(int[] ArrayToSort, int digit)

        {   

            //low to high digit

            for (int k = 1; k <= digit; k++)

            {       

                //temp array to store the sort result inside digit

                int[] tmpArray = new int[ArrayToSort.Length]; 

                //temp array for countingsort 

                int[] tmpCountingSortArray = new int[10]{0,0,0,0,0,0,0,0,0,0};        

                //CountingSort        

                for (int i = 0; i < ArrayToSort.Length; i++)        

                {           

                    //split the specified digit from the element 

                    int tmpSplitDigit = ArrayToSort[i]/(int)Math.Pow(10,k-1) - (ArrayToSort[i]/(int)Math.Pow(10,k))*10; 

                    tmpCountingSortArray[tmpSplitDigit] += 1; 

                }         

                for (int m = 1; m < 10; m++)      

                {            

                    tmpCountingSortArray[m] += tmpCountingSortArray[m - 1];        

                }        

                //output the value to result      

                for (int n = ArrayToSort.Length - 1; n >= 0; n--)       

                {           

                    int tmpSplitDigit = ArrayToSort[n] / (int)Math.Pow(10,k - 1) - (ArrayToSort[n]/(int)Math.Pow(10,k)) * 10;           

                    tmpArray[tmpCountingSortArray[tmpSplitDigit]-1] = ArrayToSort[n];            

                    tmpCountingSortArray[tmpSplitDigit] -= 1;       

                }        

                //copy the digit-inside sort result to source array       

                for (int p = 0; p < ArrayToSort.Length; p++)       

                {           

                    ArrayToSort[p] = tmpArray[p];       

                }   

            }    

            return ArrayToSort;

        }

8、计数排序

//计数排序

        /// <summary>

        /// counting sort

        /// </summary>

        /// <param name="arrayA">input array</param>

        /// <param name="arrange">the value arrange in input array</param>

        /// <returns></returns>

        public int[] CountingSort(int[] arrayA, int arrange)

        {    

            //array to store the sorted result,  

            //size is the same with input array. 

            int[] arrayResult = new int[arrayA.Length];    

            //array to store the direct value in sorting process   

            //include index 0;    

            //size is arrange+1;    

            int[] arrayTemp = new int[arrange+1];    

            //clear up the temp array    

            for(int i = 0; i <= arrange; i++)    

            {        

                arrayTemp[i] = 0;  

            }    

            //now temp array stores the count of value equal  

            for(int j = 0; j < arrayA.Length; j++)   

            {       

                arrayTemp[arrayA[j]] += 1;   

            }    

            //now temp array stores the count of value lower and equal  

            for(int k = 1; k <= arrange; k++)   

            {       

                arrayTemp[k] += arrayTemp[k - 1];  

            }     

            //output the value to result    

            for (int m = arrayA.Length-1; m >= 0; m--)   

            {        

                arrayResult[arrayTemp[arrayA[m]] - 1] = arrayA[m];    

                arrayTemp[arrayA[m]] -= 1;  

            }    

            return arrayResult;

        }

9、小根堆排序

/// <summary>

        /// 小根堆排序

        /// </summary>

        /// <param name="dblArray"></param>

        /// <param name="StartIndex"></param>

        /// <returns></returns>



        private void HeapSort(ref double[] dblArray)

        {

            for (int i = dblArray.Length - 1; i >= 0; i--)

            {

                if (2 * i + 1 < dblArray.Length)

                {

                    int MinChildrenIndex = 2 * i + 1;

                    //比较左子树和右子树,记录最小值的Index

                    if (2 * i + 2 < dblArray.Length)

                    {

                        if (dblArray[2 * i + 1] > dblArray[2 * i + 2])

                            MinChildrenIndex = 2 * i + 2;

                    }

                    if (dblArray[i] > dblArray[MinChildrenIndex])

                    {





                        ExchageValue(ref dblArray[i], ref dblArray[MinChildrenIndex]);

                        NodeSort(ref dblArray, MinChildrenIndex);

                    }

                }

            }

        }



        /// <summary>

        /// 节点排序

        /// </summary>

        /// <param name="dblArray"></param>

        /// <param name="StartIndex"></param>



        private void NodeSort(ref double[] dblArray, int StartIndex)

        {

            while (2 * StartIndex + 1 < dblArray.Length)

            {

                int MinChildrenIndex = 2 * StartIndex + 1;

                if (2 * StartIndex + 2 < dblArray.Length)

                {

                    if (dblArray[2 * StartIndex + 1] > dblArray[2 * StartIndex + 2])

                    {

                        MinChildrenIndex = 2 * StartIndex + 2;

                    }

                }

                if (dblArray[StartIndex] > dblArray[MinChildrenIndex])

                {

                    ExchageValue(ref dblArray[StartIndex], ref dblArray[MinChildrenIndex]);

                    StartIndex = MinChildrenIndex;

                }

            }

        }



        /// <summary>

        /// 交换值

        /// </summary>

        /// <param name="A"></param>

        /// <param name="B"></param>

        private void ExchageValue(ref double A, ref double B)

        {

            double Temp = A;

            A = B;

            B = Temp;

        }

 

 

你可能感兴趣的:(排序算法)