- word2vec(一) CBOW与Skip-Gram模型基础
浮汐
自然语言处理
1.词向量词向量就是用来将语言中的词进行数学化的一种方式,顾名思义,词向量就是把一个词表示成一个向量。这样做的初衷就是机器只认识01符号。所以,词向量是自然语言到机器语言的转换。Word2Vec其实就是通过学习文本来用词向量的方式表征词的语义信息,即通过一个嵌入空间使得语义上相似的单词在该空间内距离很近。Embedding其实就是一个映射,将单词从原先所属的空间映射到新的多维空间中,也就是把原先词
- 第十节:通过Debug解析ChatGLMModel的数据流,理解视觉与语言模型结合架构
tangjunjun-owen
语言模型人工智能自然语言处理GLM-4v-9B多模态大模型教程ChatGLMModel
文章目录前言一、forward的参数解读二、图像编码token数量值方法解读三、input_ids的embedding方法解读1、embedding编码方法2、Embedding源码四、视觉编码方法解读五、inputs_embeds与position_ids编码加工方法解读1、inputs_embeds与position_ids编码方法2、图示解读编码方法3、inputs_embeds与posit
- 【小白学AI系列】NLP 核心知识点(七)Embedding概念介绍
Blankspace空白
人工智能自然语言处理embedding
Embedding(嵌入)是自然语言处理(NLP)中非常重要的概念。简单来说,embedding是一种将离散的、稀疏的、不可直接计算的对象(比如词、字符或句子)转换为密集的、连续的向量表示的技术。这个向量通常是低维的,并且在向量空间中能够捕捉到该对象的某些语义或结构特征。可以通过这种方式将我们通常理解为文本的信息转化为模型可以处理的数字形式。1.为什么需要Embedding?传统的计算机处理文本的
- 大模型实战一(续)、Ollama+RagFlow 部署本地知识库(常见报错问题排查)
伯牙碎琴
大模型大模型
鉴于Ollama+RagFlow部署本地知识库很多人会遇到各种问题,本文持续更新用于汇总各种常见报错问题的排查思路和解决方案错误示例一:“httpxINFOHTTPRequest:POSThttp://127.0.0.1:11434/api/embeddings"HTTP/1.1500InternalServerError”这个错误提示表明RagFlow在请求http://127.0.0.1:11
- 使用 AnyscaleEmbeddings 进行文本嵌入
dgay_hua
python
在自然语言处理(NLP)领域中,嵌入(Embedding)是一种将文本转换为向量表示的方法。今天,我们将通过AnyscaleEmbeddings类来演示如何进行文本嵌入,它能有效地将文本转换为高维向量,这在文本相似度计算、文本分类等任务中非常有用。1.技术背景介绍嵌入模型是NLP中的一种常见技术,它能够将语言数据映射为固定长度的高维向量。通过预训练模型(如BERT、GPT等),我们可以获得语义丰富
- 自然语言处理NLP 01语言转换&语言模型
伊一大数据&人工智能学习日志
自然语言处理自然语言处理人工智能语言模型nlp机器学习深度学习
目录语言转化方式1.数据预处理(DataPreprocessing)(1)文本清理(2)分词(3)语言特殊处理2.特征提取(FeatureExtraction)(1)词袋模型(BagofWords,BoW)(2)TF-IDF(3)词嵌入(WordEmbedding)3.模型输入(ModelInput)(1)序列编码(2)预训练模型输入4.模型推理(ModelInference)(1)使用传统模型(
- 什么是Embedding、RAG、Function calling、Prompt engineering、Langchain、向量数据库? 怎么使用
ZhangJiQun&MXP
教学2021论文2024大模型以及算力embeddingpromptlangchain语言模型自然语言处理人工智能神经网络
什么是Embedding、RAG、Functioncalling、Promptengineering、Langchain、向量数据库?怎么使用目录什么是Embedding、RAG、Functioncalling、Promptengineering、Langchain、向量数据库?怎么使用Embedding(嵌入)RAG(检索增强生成)Functioncalling(函数调用)Promptengin
- 利用Infinity Embeddings创建文本嵌入
qahaj
python
技术背景介绍在自然语言处理(NLP)任务中,文本嵌入是一种将文本数据转换成固定维度向量的技术。这些向量能够捕捉文本之间的语义关系,使得在后续的任务(如文本分类、相似度计算等)中非常实用。Infinity嵌入模型是一种能够方便创建高质量文本嵌入的现代工具。核心原理解析InfinityEmbeddings利用强大的预训练模型,通过对输入的文本数据进行编码,生成具有语义意义的高维向量。这个过程不仅仅是简
- 一杯咖啡的时间学习大模型(LLM):LLaMA解读之旋转编码RoPE(含代码实现)
Bug_makerACE
llamapython人工智能nlppytorch深度学习transformer
文章目录一、LLaMA的核心改进全景二、旋转位置编码(RoPE)2.1改进动机2.2数学原理2.3源码实现一、LLaMA的核心改进全景Meta开源的LLaMA模型凭借其卓越的性能表现成为大模型发展的重要里程碑。相较于标准Transformer架构,LLaMA主要在以下几个方面进行了关键改进:位置编码升级:采用旋转位置编码(RotaryPositionEmbedding,RoPE)归一化革新:对每个
- DeepSeek 实现原理探析
rockmelodies
人工智能aideepseek深度学习
DeepSeek实现原理探析引言DeepSeek是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索结果。本文将深入探讨DeepSeek的实现原理,分析其核心技术及其在实际应用中的表现。一、DeepSeek的核心技术自然语言处理(NLP)词嵌入(WordEmbedding):DeepSeek使用如Word
- 使用 HuggingFace 库进行本地嵌入向量生成
qq_37836323
python人工智能开发语言
在当今的AI和机器学习应用中,嵌入向量(embeddings)已成为不可或缺的一部分。嵌入向量能够将文本等高维数据转换为低维稠密向量,从而便于计算和分析。在本文中,我们将介绍如何使用HuggingFace库在本地生成嵌入向量,并演示相关代码。环境准备首先,我们需要安装一些必要的依赖库。可以通过以下命令进行安装:#安装必要的库!pipinstallsentence-transformers!pipi
- LLM+Embedding构建问答系统的局限性及优化方案
lichunericli
人工智能自然语言处理语言模型
LangChain+LLM方案的局限性:LLM意图识别准确性较低,交互链路长导致时间开销大;Embedding不适合多词条聚合匹配等。背景在探索如何利用大型语言模型(LLM)构建知识问答系统的过程中,我们确定了两个核心步骤:将用户提出的问题和知识库中的信息转换成嵌入向量(Embeddings),然后利用向量相似度技术来检索最相关的知识条目。利用LLM来识别用户问题的意图,并对检索到的原始答案进行加
- DeepSeek:API调用+联网搜索,分钟打造企业级 AI 应用
奔向理想的星辰大海
云原生人工智能
现在只需拖拽几步,就能搭建一个基于DeepSeek、集「智能问答+知识管理+实时搜索」于一体的AI应用,让大模型更智能、更精准。这样的新组合,将如何升级大模型使用体验?来一探究竟:免部署,分钟级搭建AI应用在腾讯云大模型知识引擎中,将DeepSeek大模型无缝整合到自己的应用场景中——平台提供多轮对话、文档解析、文本拆分、embedding计算等功能,开发者可以根据需求自由组合,分钟级灵活搭建智能
- 快速Elasticsearch向量评分插件安装与使用指南
缪阔孝Ruler
快速Elasticsearch向量评分插件安装与使用指南fast-elasticsearch-vector-scoringScoredocumentsusingembedding-vectorsdot-productorcosine-similaritywithESLuceneengine项目地址:https://gitcode.com/gh_mirrors/fa/fast-elasticsear
- LLM 中的 vocabulary 和 embedding vector
Overman..
LLMembedding人工智能LLM大模型
vocabulary将自然语言转换为tokenid是根据模型使用的词汇表(vocabulary)进行的。这个过程通常分为两个步骤:分词(Tokenization)将输入的自然语言文本按照某种规则分割成一系列的token,可以是单词、子词或者字符等。分词的规则需要事先定义好,通常使用诸如基于词典、基于规则、基于统计等方法。查表(Lookup)将分词得到的每个token在词汇表中查找对应的数值id。词
- GraphRAG如何使用ollama提供的llm model 和Embedding model服务构建本地知识库
m0_74824865
面试学习路线阿里巴巴embeddingflaskpython
使用GraphRAG踩坑无数在GraphRAG的使用过程中将需要踩的坑都踩了一遍(不得不吐槽下,官方代码有很多遗留问题,他们自己也承认工作重心在算法的优化而不是各种模型和框架的兼容性适配性上),经过了大量的查阅各种资料以及debug过程(Indexing的过程有点费机器),最终成功运行了GraphRAG项目。先后测试了两种方式,都成功了:使用ollama提供本地llmmodel和Embedding
- 如何在 Node.js 中创建嵌入向量
如何在Node.js中创建嵌入向量原文链接:HowtoCreateVectorEmbeddingsinNode.js作者:PhilNash译者:倔强青铜三前言大家好,我是倔强青铜三。是一名热情的软件工程师,我热衷于分享和传播IT技术,致力于通过我的知识和技能推动技术交流与创新,欢迎关注我,微信公众号:倔强青铜三。欢迎点赞、收藏、关注,一键三连!!!在构建检索增强生成(RAG)应用时,首要任务是准备
- nodejs 实现加载 huggingface local embedding model 方法
gaohongfeng1
embeddingnode.jstransformer
耗尽两天出坑,整理过程如下,希望对遇到问题的人得到帮助!!!首先nodejs在大模型生态上,坑还是超级多,尤其是对我不熟悉nodejs。我没有从零创建项目,比如用npminit方法,而是使用的一个开源项目:gitclonehttps://github.com/langchain-ai/langchain-nextjs-template.git基于这个项目本身pnpmdev页面显示正常,然后创建li
- golang 代发邮件支持附件发送,outlook案列,其他邮箱需要替换对应邮箱服务域名
AuLuo-
golang
GPT===问答实例importpandasaspdfromopenai.embeddings_utilsimportget_embedding,cosine_similarityimportopenaiimportosimportloggingasloggerfromflask_corsimportCORSimportosopenai.api_key=os.getenv('OPENAI_API_
- 前端大模型入门:编码(Tokenizer)和嵌入(Embedding)解析
大模型玩家
前端embedding产品经理经验分享算法人工智能学习方法
本文介绍了大规模语言模型(LLM)中的两个核心概念:Tokenizer和Embedding。Tokenizer将文本转换为模型可处理的数字ID,而Embedding则将这些ID转化为能捕捉语义关系的稠密向量。文章通过具体示例和代码展示了两者的实现方法,帮助读者理解其基本原理和应用场景。作者|想飞的雪糕LLM的核心是通过对语言进行建模来生成自然语言输出或理解输入,两个重要的概念在其中发挥关键作用:T
- 使用 LangChain 掌握检索增强生成 (RAG) 的终极指南:2、查询转换
Hugo_Hoo
使用LangChain掌握RAG的指南langchain人工智能AI编程
查询转换查询转换的核心思想是将用户查询以一种能让大型语言模型(LLM)正确回答问题的方式进行翻译或转换。例如,如果用户提出一个模糊的问题,我们的RAG检索器可能会根据与用户问题不太相关的嵌入(embeddings)检索出错误的(或模糊的)文档,导致LLM生成错误的答案。解决这个问题有几种方法:退一步提示(Step-backprompting):这涉及到鼓励LLM从一个给定的问题或问题中退一步,提出
- OpenAI 实战进阶教程 - 第八节: 模型扩展与智能工具开发 - 理解 Embedding 与向量检索原理
山海青风
人工智能人工智能python
适合的读者群体软件开发人员:需要在项目中实现智能检索或问答功能的工程师。数据分析师/科学家:对自然语言处理、文本挖掘等方向感兴趣,希望了解最新向量检索技术。技术产品经理:希望在产品中集成智能搜索、FAQ问答等功能,提升用户体验。为什么要采用Embedding与向量检索技术?在很多企业或组织中,都有大量的文字资料(FAQ、产品手册、文档案例等)。传统的关键词搜索只能依赖于字符串匹配,对于意思相近但表
- PDF问答工具(基于openai API和streamlit)
橙意满满的西瓜大侠
人工智能streamlitlangchain人工智能
utils.py:fromlangchain_community.document_loadersimportPyPDFLoaderfromlangchain_text_splittersimportRecursiveCharacterTextSplitterfromlangchain_openai.embeddingsimportOpenAIEmbeddingsfromlangchain_com
- 关于双塔模型的简单介绍
eso1983
python算法推荐算法
双塔模型是一种常用于推荐系统和信息检索等领域的深度学习架构,其核心思想是将用户和物品分别映射到不同的向量空间,通过计算两个向量的相似度来预测用户对物品的偏好或相关性。1.python示例使用python语言来简单示例一下实现过程如下:importtensorflowastffromtensorflow.keras.layersimportInput,Dense,Embedding,Concaten
- 使用Qdrant进行矢量相似性搜索的实践
hgSdaegva
pythonwindowslinux
在今天的文章中,我将带你深入了解Qdrant,这是一个生产就绪的矢量相似性搜索引擎,并提供一个便利的API来存储、搜索和管理点。这篇文章重点展示如何使用Qdrant进行自我查询检索,并结合OpenAIEmbeddings进行矢量化处理。技术背景介绍Qdrant是一个专注于矢量相似性搜索的引擎,适用于需要快速检索和过滤的场景。它允许我们通过API轻松地存储和管理矢量数据点,并根据矢量相似性进行高效检
- 向量语义(Vector Semantics)与表征学习(Representation Learning)详解
苏西月
学习人工智能
1.向量语义(VectorSemantics)与词嵌入(WordEmbeddings)向量语义的核心思想是用数学向量来表示单词的意义。传统的NLP方法(如基于规则的语言模型)需要人为定义单词的语义规则,而向量语义方法则通过分析单词在大量文本中的使用模式来学习其语义。关键词:词向量(WordRepresentations):单词被表示为一个多维向量,每个维度对应于该单词的某种语义特征。分布式表示(D
- pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)
纠结哥_Shrek
pytorchtransformerbert
以下是一个完整的词嵌入(WordEmbedding)示例代码,使用modelscope下载tiansz/bert-base-chinese模型,并通过transformers加载模型,获取中文句子的词嵌入。frommodelscope.hub.snapshot_downloadimportsnapshot_downloadfromtransformersimportBertTokenizer,Be
- 自然语言处理-词嵌入 (Word Embeddings)
纠结哥_Shrek
自然语言处理人工智能
词嵌入(WordEmbedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有相近的表示。常见词嵌入方法基于矩阵分解的方法LatentSemanticAnalysis(LSA)LatentDirichletAllocation(LDA)非负矩阵分解(NMF)基于神经网络的方法Word2Vec(Google提
- 【llm对话系统】大模型源码分析之llama模型的long context更长上下文支持
kakaZhui
llama深度学习pytorchAIGCchatgpt
1.引言Llama模型的一个重要特性是支持长上下文处理。本文将深入分析Llama源码中实现长上下文的关键技术点,包括位置编码(positionembedding)的外推方法、注意力机制的优化等。我们将通过详细的代码解析来理解其实现原理。2.位置编码的外推实现2.1旋转位置编码(RoPE)基础Llama采用旋转位置编码(RoPE,RotaryPositionEmbedding)来编码token的位置
- 【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
kakaZhui
llama深度学习人工智能AIGCchatgpt
在自然语言处理(NLP)领域,Transformer模型已经成为主流。然而,Transformer本身并不具备处理序列顺序的能力。为了让模型理解文本中词语的相对位置,我们需要引入位置编码(PositionalEncoding)。本文将深入探讨LLaMA模型中使用的RotaryEmbedding(旋转式嵌入)位置编码方法,并对比传统的Transformer位置编码方案,分析其设计与实现的优势。1.传
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那