- 解码服务竞争力,医疗美容机构如何在红海中突围?
湖南群狼调研
神秘顾客湖南群狼市场调查暗访长沙群狼调用
医疗与美容行业的竞争早已进入“贴身肉搏”阶段,(武汉问卷调查公司)(美容行业神秘顾客)(长沙市场调研公司)而决定胜负的核心,藏在患者挂完号后的等待里,藏在医生解释病情的语气里,藏在检查报告递出时的说明里——这些看不见的服务细节,正是拉开差距的关键。湖南群狼市场调查,17年专注医疗与美容机构暗访服务,以第三方的客观视角,为机构解码服务竞争力的密码,助您在激烈竞争中撕开市场缺口。一:17年行业洞察,暗
- 思维链革命:让大模型突破“机器思考”的边界
John Song
AI人工智能思维链2.0CoT多模态思维链元认知优化
以下是对LilianWeng思维链技术深度解析文章(原文链接)的博客化重构,融合技术本质与应用实践:思维链革命:让大模型突破“机器思考”的边界——解析ChainofThought技术体系与下一代推理架构一、从黑箱到透明思考:CoT的核心突破传统LLM困境:“大模型如同天才自闭症患者——知识渊博却无法展示思考路径”CoT解决方案:#标准CoT提示模板prompt="""问题:小明有5个苹果,吃掉2个
- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(上)
Allen_Lyb
数智化医院2025人工智能健康医疗算法
引言人工智能技术正以前所未有的速度改变着医疗保健领域,从辅助诊断到个性化治疗,AI应用的广度和深度不断拓展。在这一浪潮中,边缘人工智能(EdgeAI)作为一种新兴技术范式,正成为推动医疗AI创新的关键力量。边缘AI区别于传统的云计算模式,它将数据处理和AI模型部署在数据源头附近,实现快速响应和隐私保护。这种特性使其在医疗保健领域具有独特优势,特别是在实时监测、紧急响应和患者隐私保护等方面。边缘AI
- 智慧医院系统开发
VV- Wxiaoxwen
软件工程开源软件软件构建
智慧医院系统开发是一个复杂的工程,以下是其开发的一般步骤和相关要点:需求分析-与医院各部门深入沟通,明确门诊、住院、药房、检验、影像等不同科室的业务流程和需求。-了解医院对系统功能的期望,如患者信息管理、电子病历系统、医疗设备管理、远程医疗等功能需求。-考虑系统的安全性、稳定性、可扩展性以及与医院现有系统的兼容性等非功能需求。系统设计-架构设计:采用微服务架构等先进的架构模式,提高系统的可维护性和
- 用python写一个hello world、把代码写下来_程序员如何利用Python写出hello world
weixin_39699070
用python写一个helloworld把代码写下来
学习编程语言的第一步,让你的程序对这个世界说一声helloworld!这个程序是编程界经典中的经典,让无数编程恐惧症患者得以顺利写出第一个程序,从而走上大神的不归路!1.新建文本文档先让我们在桌面上新建一个文本文档(helloWorld.txt)2.键入代码现在我们在桌面上已经有了一个空白的文本文档helloWorld.txt,接下来我们打开helloWorld.txt键入下面这这行代码print
- 护照阅读器在医疗行业的应用
2401_83623586
科技
随着医疗全球化程度加深和患者流动性增加,护照阅读器在医疗行业的应用价值将愈发凸显。这项技术不仅解决了医疗机构的效率和安全问题,也为患者提供了更加顺畅、安全的就医体验,成为现代医疗信息化基础设施中不可或缺的一环。护照阅读器在医疗旅游中的革新应用跨境医疗旅游作为全球增长最快的健康产业分支之一,正经历着前所未有的扩张。据市场研究数据显示,全球医疗旅游产业规模预计在2025年达到惊人的1,250亿美元,年
- 基于大模型的颅前窝底脑膜瘤诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究意义与创新点二、颅前窝底脑膜瘤概述2.1定义与分类2.2发病机制与病因2.3临床表现与症状三、大模型预测原理与方法3.1大模型介绍3.2数据收集与预处理3.3模型训练与验证四、术前预测与准备4.1肿瘤特征预测4.2手术风险预测4.3术前检查与评估4.4患者沟通与教育五、手术方案制定5.1手术入路选择5.2手术步骤规划5.3术中监测与应急
- 《支持向量机(SVM)在医疗领域的变革性应用》
CodeJourney.
支持向量机算法机器学习
在医疗科技日新月异的今天,先进的数据分析与机器学习技术正逐渐成为提升诊疗水平、助力医学研究的关键力量。支持向量机(SVM),凭借其独特的优势,在医疗这片复杂且对精准度要求极高的领域崭露头角,带来诸多令人瞩目的应用成果。一、疾病诊断:癌症早期筛查的“火眼金睛”癌症,作为全球健康的“头号杀手”,早期诊断对提升患者生存率意义非凡。在乳腺癌筛查领域,SVM发挥着重要作用。医疗科研人员收集大量乳腺组织的影像
- GraphRAG革命性突破!美国Cedars-Sinai医疗中心揭秘:知识增强大模型如何重塑阿尔茨海默病基因研究与治疗?
DeepSeek-大模型系统教程
人工智能大模型chatgpt语言模型ai大模型学习大模型教程
摘要:随着阿尔茨海默病患者人数不断攀升,Cedars-Sinai医学中心通过知识图谱和AI技术,打造了AlzKB阿尔茨海默病知识库,用以推动新型病因和药物的发现。本文详解这些前沿工具如何结合,赋能专业人士实现高效科研转化,为认知障碍领域带来突破正文据估计,690万65岁及以上的美国人患有阿尔茨海默病。如果没有重大的医学突破,预计到2060年,美国这一数字将上升到1380万,到2050年全球将上升到
- 嵌入式系统中项目开发的基本要素
嵌入式开发星球
单片机项目实战操作之优秀linux服务器
一、理解系统需求1.1与各方沟通,明确具体要求我们需与客户、项目经理、硬件工程师等相关方展开深入且细致的沟通,全方位了解项目需求。•功能需求。如智能家居系统,需涵盖灯光调控、温度调节、家电控制等多元功能;•性能需求。如同工业自动化控制系统,对实时性与稳定性要求严苛,响应时间须控制在毫秒级;•安全需求。以医疗设备为例,务必保障数据传输的保密性与完整性,防止患者信息泄露;还有特殊要求,像航空航天领域的
- 4篇2章3节:三因素(2b × 3w × 2b)混合设计功效模拟实战,以抗高血压药物试验为例
MD分析
用R探索医药数据科学r语言开发语言r语言-4.2.1机器学习
高血压作为全球范围内最常见且危害巨大的慢性疾病之一,持续威胁着公众健康。其复杂的发病机制和个体间显著的治疗反应差异,使得临床试验设计面临越来越高的挑战。尤其是在精准医学背景下,单因素分析已无法充分揭示药物疗效的动态变化及不同患者亚型的异质性。为此,采用多因素混合设计成为研究趋势,能够同时考虑治疗组别、时间变化及患者类型等多重因素及其交互作用,有效提高研究的科学性和解释力。然而,复杂设计也带来了样本
- 基于大模型的胆囊结石全流程预测与诊疗系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、系统架构设计(一)数据采集与预处理模块(二)大模型核心算法模块(三)应用层功能模块三、全流程系统流程图四、术前阶段详细方案(一)患者信息采集与整合(二)胆囊结石风险预测(三)手术方案制定辅助(四)麻醉方案规划五、术中阶段详细方案(一)实时数据监测与传输(二)手术进程智能辅助六、术后阶段详细方案(一)术后恢复情况预测(二)并发症风险预测(三)护理方案调整(四)康复指导七、并发症风险预
- 扣带回灰质体积:双任务步态与痴呆发病关联的关键中介
楚山之石
学习图像处理科技人工智能mr
扣带回灰质体积介导双任务步态与痴呆发病的关联研究背景与核心问题随着全球人口老龄化,痴呆已成为重大公共卫生挑战,而轻度认知障碍(MCI)作为正常认知与痴呆的过渡状态,是早期干预的关键窗口。双任务步态测试(行走时执行认知任务)中出现的高双任务成本(DTC,即步态速度较单任务时减慢≥20%),已被证实与MCI患者进展为痴呆的风险升高相关,但这一关联的神经机制尚不明确。本研究旨在探索脑灰质体积减少和运动皮
- 筑牢医疗AI安全防线:四重防护体系全解析
Allen_Lyb
数智化教程(第二期)人工智能安全
一、引言:医疗AI发展中的安全困境在数字化浪潮席卷下,医疗领域正经历着一场由人工智能(AI)驱动的深刻变革。医疗AI凭借其强大的数据分析与处理能力,在疾病诊断、药物研发、健康管理等诸多环节展现出巨大潜力,成为推动医疗行业进步的关键力量。而这一切的背后,医疗数据作为AI发展的“燃料”,以及AI算力作为运行的“引擎”,起着不可或缺的核心作用。医疗数据涵盖了患者从基本信息、病史、症状描述到各种检查检验报
- 机器学习-- 聚类
SunsPlanter
机器学习机器学习聚类人工智能
什么是聚类?Clustering可以简单地说,对有标注的数据分类,就是逻辑回归(属于有监督分类),对无标注的数据分类,就是聚类(属于无监督分类)聚类是一种无监督学习技术,其目标是根据样本之间的相似性将未标记的数据分组。比如,在一个假设的患者研究中,研究人员正在评估一项新的治疗方案。在试验期间,患者每周会报告自身症状的频率以及严重程度。研究人员可以使用聚类分析将对治疗反应相似的患者归为同一类。图1展
- 高通量多因子检测赋能胰腺癌生物标志物发现与临床转化
LabEx
Luminex液相芯片胰腺癌多因子检测斑蝥素乐备实labex科研服务
研究背景:胰腺癌作为恶性程度极高的消化系统肿瘤,其死亡率与发病率近乎持平的临床特征始终是医学领域的重大挑战。与多数癌症生存率稳步提升的趋势不同,胰腺癌的诊疗进展长期滞后——超过50%的患者确诊时已处于疾病晚期,对传统放化疗方案呈现显著耐药性。据美国2017年流行病学数据显示,胰腺癌患者5年相对生存率仅8%,尽管男性患者生存率呈现年均0.3%的微弱提升,但整体预后仍处于恶性肿瘤谱系的最底端,临床对创
- 基于 Expo 打造现代化医疗应用:从零到生产的完整实践
基于Expo打造现代化医疗应用:从零到生产的完整实践分享一个基于Expo+ReactNative的真实医疗项目架构实践,涵盖现代化技术栈、组件化设计、原生模块集成等核心技术点。项目背景最近参与开发了一个医疗行业的移动端管理应用,主要服务于医疗机构的日常管理需求,包括患者管理、预约系统、数据统计等核心功能。项目采用Expo+ReactNative技术栈,在保证开发效率的同时,实现了接近原生的用户体验
- 互联网医院信息系统(HIS系统)如何解决远程诊疗的问题?
嘉讯科技HIS系统
科技智慧医疗人工智能网络数据库
在数字化浪潮的推动下,互联网医学正以其独特的优势逐步改变着传统的医疗模式。特别是在远程诊断和治疗领域,互联网医学显示出巨大的潜力和价值。然而,远程诊断和治疗也面临着许多挑战,例如医生和患者之间沟通不畅、隐私和安全问题以及诊断准确性有限。本文将深入探讨互联网医学如何解决远程诊疗的这些问题,以期为远程医疗的健康发展提供思路和建议。一、在远程诊疗中,医患沟通是提高医患沟通有效性的核心环节。然而,由于无法
- 随机化在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、随机化的核心目的1.1控制混杂偏倚1.1.1平衡预后因素确保已知/未知预后因素在组间分布均衡,避免基线不平衡影响结果。1.1.2避免选择偏倚防止研究者或患者主观选择分组,保障组间差异归因于干预。1.2保障统计推断有效性1.2.1满足独立性假设满足统计检验的独立性假设,使统计推断有效。1.2.2实现盲法基础为双盲实施提供先决条件,确保试验结果无偏。二、随机化类型与技术实现2.1简单随机化2.1.
- 临床试验评价指标解析
qq_34062333
临床试验统计学
一、主要疗效终点1.1生存类终点1.1.1总生存期(OS)定义:随机至全因死亡的时间统计方法:Kaplan-Meier,Cox模型优势/局限:金标准,无测量偏倚;但需大样本长随访1.1.2无进展生存期(PFS)定义:随机至疾病进展/死亡的时间统计方法:同上优势/局限:敏感、不受后续治疗影响;但评估易受主观性干扰1.1.3客观缓解率(ORR)定义:肿瘤缩小≥30%的患者比例(RECIST标准)统计方
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- 盲法在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、盲法分级与科学价值1.1开放标签1.1.1受盲对象无隐藏。1.1.2适用场景外科手术、器械试验等无法伪装的操作。1.1.3偏倚控制目标仅客观终点(生存率、实验室指标)。1.2单盲1.2.1受盲对象患者。1.2.2适用场景患者报告结局(PRO)为主的试验(如抑郁症)。1.2.3偏倚控制目标避免患者期望效应影响主观症状报告。1.3双盲1.3.1受盲对象患者+研究者+评估员。1.3.2适用场景药物试
- 健康医院门诊在线挂号系统
学长代码V
springboot后端
基于SSM框架与MySQL数据库实现的健康医院门诊在线挂号系统在当今数字化时代,健康医院门诊在线挂号系统的开发对于提升医院运营效率和患者就医体验至关重要。本文将介绍一个基于SSM框架与MySQL数据库实现的健康医院门诊在线挂号系统,探讨其技术路线和主要功能,并分享相关资源。技术路线该健康医院门诊在线挂号系统采用成熟的SSM(Spring+SpringMVC+MyBatis)框架进行开发。SSM框架
- 模型性能评估实战:解密大模型准确率与召回率的计算逻辑与业务权衡
在AI项目落地过程中,模型性能评估是关键一步。想必大家都听过这样的案例:某医疗AI项目中,一个在测试集上准确率达到98%的肺癌筛查模型,实际部署后却遗漏了20%的早期癌变患者。无独有偶,某银行风控系统中,一个标榜着99.5%“高准确率”的模型,实际使用中却放过了90%的信用卡欺诈行为。这些案例都给我们敲响了警钟,模型性能评估中存在不少被忽视的致命盲区,今天就让我们一同深入探寻这其中的奥秘。第一部分
- 单片机病房呼叫系统设计
01单片机设计
单片机单片机嵌入式硬件
单片机病房呼叫系统设计摘要:一般来说,病房呼叫系统是方便于病人患者与医护人员灵活沟通的一种呼叫系统,是解决医护人员与病人患者之间信息反馈的一种手段。病床呼叫系统的好坏直接关系到病人患者的生命安危,像今年的新冠型肺炎,没有一个灵活可靠的医疗系统真的不行。本课题的任务是设计出基于STM32单片机的病床呼叫系统以及对它的各项功能进行控制的控制系统。系统设计包括矩阵键盘,LCD12864液晶显示器显示电路
- AI助力基因遗传疾病检测:现状与未来
t0_54program
大数据与人工智能人工智能个人开发
在现代医学领域,与基因紊乱相关疾病的早期检测至关重要。像肺癌,早期诊断的患者5年生存率可达57%,而四期癌症患者生存率仅3%。阿尔茨海默病的早期检测,能让患者改变生活方式、参与临床试验并提前治疗脑部退化症状,有效延长生命。尽管基因检测对评估晚发性阿尔茨海默病的可能性有帮助,对早发性阿尔茨海默病也有指示作用,但其检测技术仍有待完善。目前,仅基于生物学研究的疾病检测技术多样,虽对特定病例精确,但通常需
- 医患协同在线诊疗解决方案
小程序
智慧在线医疗APP微信小程序系统是基于微擎开源生态开发的医疗行业数字化工具,依托微擎系统的PHP开源架构,为医院、医生及患者提供从在线问诊、预约挂号到远程诊疗的全流程解决方案。系统采用双端架构(患者端+医生端),支持安卓与IOS平台,实现“线上咨询-视频诊疗-电子处方”的闭环医疗服务,适配综合医院、专科诊所及基层医疗场景。核心功能模块与技术特性患者端功能体系便捷注册与登录:支持手机号注册,填写姓名
- 基于大模型的心力衰竭预测与干预全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录一、引言二、系统概述三、术前阶段(一)患者信息采集与预处理(二)大模型预测心力衰竭风险(三)手术方案制定辅助(四)麻醉方案规划四、术中阶段(一)实时数据监测与传输(二)大模型术中决策支持五、术后阶段(一)术后病情监测与评估(二)并发症风险预测与防控(三)术后护理计划生成六、健康教育与指导(一)个性化教育内容生成(二)康复随访与远程指导七、统计分析与技术验证(一)系统性能评估指标(二)数据分割与
- AI医生也开始“疯狂内卷”起来了?未来医生要失业了吗?
程序员一粟
人工智能语言模型产品经理自然语言处理大数据
前言在近年来医疗行业的数字化变革浪潮中,人工智能(AI)技术的迅速发展正成为不可忽视的力量。就在今年9月5日,支付宝在“2024Inclusion·外滩大会”上重磅发布了“AI健康管家”,这并不是一个传统的医疗智能体,而是一个覆盖诊前、诊中、诊后全流程的智能平台,旨在为患者提供从找医生、陪诊到医保支付等一站式服务。支付宝数字医疗健康事业部总经理张俊杰表示,“AI健康管家”的核心在于整合和升级支付宝
- 无需开颅!瘫痪患者也能控制数字设备、分割一切模型开源、最强开源文生图模型问世 | AI视界周刊第 3 期
战场小包
AI视界周刊人工智能业界资讯agi
AI视界周刊由战场小包维护,每周一更新,包含热点聚焦、应用破局、学术前沿、社区热议、智见交锋、跨界AI、企业动态和争议AI八大板块,后续板块划分和内容撰写在周刊迭代过程中持续优化,欢迎大家提出建议。欢迎大家来到《AI视界周刊第3期》(07/29~08/04)。✨热点聚焦Meta「SegmentAnything」2.0开源,视频分割能力惊艳Meta公司开源了其最新计算机视觉模型SegmentAnyt
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号