- 新型铁螯合剂FOT1:靶向铁死亡治疗代谢相关脂肪性肝炎的新突破
感冒发烧流鼻涕
笔记
摘要:代谢相关脂肪性肝炎(MASH)严重威胁公众健康,目前治疗手段有限。本文聚焦于浙江大学王福俤、闵军霞及温州医科大学郑明华团队的最新研究。该研究通过对MASH患者人群大队列数据的分析,结合多种小鼠MASH疾病模型功能筛选,发现MASH患者肝脏铁过量,且与疾病进展呈强正相关。研究团队开发的新型铁螯合剂FOT1(FerroTerminator1,铁死终结者),在多种MASH模型中表现出色,能够有效逆
- A/B测试结果置信度不足时如何决策
测试工具
在A/B测试结果置信度不足时,我们需要综合采用多种策略来做出明智决策。增加样本量、延长测试周期、结合实际业务场景、多指标综合评估。其中,增加样本量尤为关键,因为样本量不足往往导致数据波动较大,易产生假阳性或假阴性,从而使测试结论失去可靠性。通过优化采样策略和科学分配资源,能够有效提升测试数据的稳定性和可信度,为后续决策提供更为坚实的数据支撑。一、A/B测试原理与背景、测试信度的重要性A/B测试作为
- 深度学习项目--基于DenseNet网络的“乳腺癌图像识别”,准确率90%+,pytorch复现
羊小猪~~
深度学习网络pytorch人工智能python机器学习分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言如果说最经典的神经网络,ResNet肯定是一个,从ResNet发布后,很多人做了修改,denseNet网络无疑是最成功的一个,它采用密集型连接,将通道数连接在一起;本文是基于上一篇复现DenseNet121模型,做一个乳腺癌图像识别,效果还行,准确率0.9+;CNN经典网络之“DenseNet”简介,源码研究与复现(pytorch):
- SpectroDive 12.1是一款专门为靶向蛋白质组学技术数据分析而开发的软件
软服之家
软件工程
SpectroDive12.1是一款专门为靶向蛋白质组学技术(如PRM和MRM)数据分析而开发的软件。它整合了PRM/MRM完整工作流程,包括建立分析panel、自动生成质谱设置方法、信号提取及定量。SpectroDive具有以下主要特点和功能:1、超快计算速度:SpectroDive以其超快的计算速度著称,能够在短时间内处理大量数据。严格的质控标准:软件采用全面的质控标准,确保数据的
- AbMole| 纳米药物递送系统IL@H-PP在乳腺癌和脑转移光热疗法
AbMole
AbMole生物化学生物试剂科研生物实验
近年来,光热疗法(PTT)作为一种非侵入性的癌症治疗手段,因其独特的优势而受到广泛关注。来自四川大学华西药学院药物靶向与药物递送系统重点实验室的范童,胡海丽,徐燕燕等多名研究人员发表了题为《HollowcoppersulfidenanoparticlescarryingISRIBforthesensitizedphotothermaltherapyofbreastcancerandbrainmet
- 什么是全栈工程师?
心雨楼
学习
什么是全栈工程师?通俗的说就是什么都懂,艺术点就是对所有技术都保持兴趣。话不多说,从网上找了个图也许能从感官上有个大概的了解,那么从我的经验来说,全栈工程师就是药,也就是所谓的药到病除了。那么你是一剂什么样的药呢?是一剂猛药良药亦或是一剂毒药还是药水,也许每个人自己心里都有自己的家传药方。
- 【CTF比赛Web题目快速探测】
D-river
securityweb安全安全
CTF比赛Web题目快速探测一、快速信息收集1.基础信息扫描2.工具自动化辅助二、快速漏洞探测1.高频漏洞靶向测试2.前端相关漏洞三、工具链组合利用1.BurpSuite自动化2.专用工具链3.编码/解码辅助四、常见CTFWeb题快速索引表五、速攻思维导图六、总结在CTF比赛中快速攻克Web题目的核心是“高效信息收集+靶向性漏洞探测”,需结合手动测试与工具链快速定位漏洞类型。以下是一套实战优化流程
- AbMole肿瘤研究综述(二):靶向抑制剂与人源单抗,开启肿瘤研究新篇章
AbMole
AbMole生物化学生物试剂科研生物实验
肿瘤的研究一直是生命科学和基础医学领域中的热门话题,随着分子生物学和肿瘤生物学等学科的发展,人们逐渐明确了一系列与肿瘤发生和转移等密切关系的基因、蛋白,包括多种受体酪氨酸激酶(RTKs,如EGFR、ALK、c-Met、TRK、BCR-ABL等)和非RTKs(如BCR-ABL、BTK、CDK等),以及一些重要的细胞信号通路,如RAS/RAF/MEK、PI3K/mTOR等。AbMole向大家介绍围绕上
- 华为面试题及答案——机器学习(二)
麦当当MDD
题目挖掘机器学习人工智能数据库开发数据库大数据
21.如何评价分类模型的优劣?(1)模型性能指标准确率(Accuracy):定义:正确分类的样本数与总样本数之比。适用:当各类样本的数量相对均衡时。精确率(Precision):定义:预测为正类的样本中实际为正类的比例。适用:当关注假阳性错误的成本较高时(例如垃圾邮件检测)。召回率(Recall):定义:实际为正类的样本中被正确预测为正类的比例。适用:当关注假阴性错误的成本较高时(例如疾病检测)。
- 一种有效的STING抑制剂 C-176 介绍AbMole
试剂界的爱马仕
科技网络算法人工智能
AbMoleC-176是一种有效的具有选择性和血脑屏障渗透性的STING抑制剂。STING是细胞内DNA感应通路的主要信号分子。C-176可共价靶向跨膜半胱氨酸残基91,从而阻断激活诱导的STING棕榈酰化。C-176可以抑制破骨细胞前体细胞中的STING活化,并以剂量依赖的方式,抑制NF-κB配体的受体激活剂诱导的破骨细胞活化,具有抗炎活性。C-176stronglyreducesSTING-m
- 深度学习-【完整代码+数据集】逻辑回归预测乳腺癌检测案例
编程千纸鹤
人工智能学习专栏深度学习逻辑回归人工智能癌症预测
作者主页:编程千纸鹤作者简介:Java、前端、Python开发多年,做过高程,项目经理,架构师主要内容:Java项目开发、Python项目开发、大学数据和AI项目开发、单片机项目设计、面试技术整理、最新技术分享收藏点赞不迷路关注作者有好处文末获得源码机器学习分为:有监督学习:数据带有标签无监督学习:数据没有标签,根据属性聚类在机器学习有监督学习中大致可以分为两大任务,一种是回归任务,一种是分类任务
- 【基于PHP的CMS动态网站的渗透测试流程】
D-river
securityphp开发语言网络安全安全web安全
基于PHP的CMS动态网站的渗透测试流程一、渗透测试流程优化1.智能信息收集阶段2.靶向漏洞扫描3.深度手动测试二、关键风险检测清单1.PHP环境风险2.数据库交互风险3.会话管理缺陷三、高效测试方法论1.自动化辅助技术2.逻辑漏洞快速定位3.WAF绕过技术四、企业级防护建议1.环境加固2.监控与响应五、典型漏洞验证(PHP对象注入)附:工具链推荐安全测试对网站意义重大,它能够提前发现网站在网络、
- 布隆过滤器:一种简单而高效的集合查询方法
菜就多练少说
Redis分布式系统哈希算法散列表算法
今天,我们来介绍一个非常高效、空间节约的集合查询工具——布隆过滤器(BloomFilter)。它是一种概率型数据结构,特别适合用于检测一个元素是否存在于集合中,并且它的查询速度非常快,且占用的空间非常小。尽管布隆过滤器有可能误判(假阳性),但是它不会漏判(假阴性)。一、布隆过滤器的基本概念布隆过滤器由一个位数组和多个哈希函数构成。它的工作原理如下:添加元素:通过多个哈希函数对元素进行哈希,得到多个
- 基于PLC的泳池水清洁系统(论文+源码)
云山工作室
单片机毕业设计毕设PLC
游泳池水清洁工艺流程如图2-1所示。从游泳池底部,通过循环水泵1或者循环水泵2将游泳池中的水抽出,进行各项水质检测,包括使用温度传感器检测温度,使用余氯传感器检测余氯,使用浊度传感器检测浊度,使用PH检测器检测PH值,通过臭氧传感器检测臭氧。根据检测的水质情形,通过采用化学方法(例如加药等),和物理方法(例如砂滤等),进行水质处理,将处理好的,达到一定水质标准要求的“净水”通过注水口回注到游泳池。
- 桑黄消结节:甲状腺与乳腺结节的天然疗法
桑黄研究员
人工智能健康医疗
——科学解读千年药菌的抗炎与免疫调节密码一、结节危机:现代人的“隐形健康杀手”甲状腺结节与乳腺结节已成为现代人高发疾病。数据显示,我国甲状腺结节检出率超20%,乳腺增生性结节发病率高达70%。西医治疗以手术和药物为主,但存在创伤大、易复发等问题。而中医古籍中记载的桑黄,凭借抗炎、免疫调节与软坚散结三重作用,正成为结节管理的天然选择。二、桑黄消结节的科学机制1.抗炎成分:阻断结节生长的“导火索”慢性
- 护肝明星桑黄:从酒精肝到脂肪肝的全周期保护
桑黄研究员
健康医疗人工智能
——科学揭秘千年药菌的肝脏修复密码一、肝脏危机:现代人的“沉默杀手”全球肝病患者超13亿,中国占55%。酒精肝、脂肪肝、药物性肝损伤等疾病年轻化趋势显著,传统护肝药物多针对症状,难以实现全周期保护。桑黄作为《神农本草经》记载的“护肝圣品”,其科学价值正被现代研究逐步验证——三萜类化合物与桑黄多糖的双重作用,使其成为从预防到修复的全能护肝选择。二、桑黄的护肝机制:从纤维化抑制到细胞再生1.三萜类化合
- 为AI聊天工具添加一个知识系统 之113 详细设计之54 Chance:偶然和适配 之2
一水鉴天
软件智能智能制造人工语言开发语言人工智能
本文要点要点祖传代码中的”槽“(占位符变量)和它在实操中的三种槽(占据槽,请求槽和填充槽,实时数据库(source)中数据(流入ETL的一个正序流程行列并发靶向整形绑定变量)是如何通过“命名所依的AI行为”、“分类所缘的因果结构”和“求实所据的机器特征”(元数据仓库OLAP的三个行式并行服务进程锚定配形-限定变量)来精确锚定ETL任务绑定中的这个绑定到底是,谁和谁的什么绑定(资源存储库随着ETL的
- 数学推理中在推理规模化下检查假阳性解
硅谷秋水
大模型机器学习人工智能语言模型深度学习机器学习人工智能
25年2月来自中科大和微软亚洲研究院的论文“ExaminingFalsePositivesunderInferenceScalingforMathematicalReasoning”。语言模型的最新进展已带来各种基准测试中数学推理能力的显著提升。然而,大多数基准测试依赖于自动评估方法,这些方法仅使用启发式方法比较最终答案,而不验证底层推理步骤。这种限制导致假阳性解,其中模型可能会产生正确的最终答案
- 重启服务器:临时救火还是长久之策?深度探讨缓存溢出与网络超时的解决方案
月落星还在
运维服务器缓存网络
在运维和开发工作中,重启服务器似乎成了一种“万能药”:缓存溢出?重启!网络请求超时?重启!服务不可用?还是重启!然而,重启真的能解决问题吗?它背后的原理是什么?又有哪些局限性?更重要的是,我们是否有更好的替代方案?本文将深入探讨这些问题,并结合实际场景,提供具体的解决方案。一、重启服务器的“魔力”从何而来?1.缓存溢出与重启缓存溢出通常是由于内存泄漏、缓存淘汰策略失效或瞬时流量激增导致的。重启服务
- 前瞻技术大解密,未来发展抢先看
火龙果wa
经验分享
生物技术在制药工艺优化中作用可大啦!它能大大提高药物生产效率和质量。比如通过基因工程,可以改造微生物来高效生产药物成分。而且生物技术能让制药过程更精准,减少杂质,确保药物品质更好。有家知名制药企业就做得很不错,他们利用生物技术改进了生产流程,不仅产量提高了,药物的效果也更棒了。这让更多患者能用上高质量的药。总之,生物技术给制药带来了很多好处,让的健康更有保障啦!
- 基于对比增强的超声视频的域知识为乳腺癌诊断提供了深度学习
Philo`
医学图像分割论文阅读深度学习人工智能论文阅读图像处理pytorch机器学习
DomainKnowledgePoweredDeepLearningforBreastCancerDiagnosisBasedonContrast-EnhancedUltrasoundVideos期刊分析摘要引言相关工作乳腺癌中的CAD基于乳房CEU的CAD方法整体框架原始C3D骨干领域知识指导的时间注意模块(DKG-TMA)域知识引导的通道注意模块数据集和实验乳腺-对比增强超声数据集实验设置实验
- 巧妙使用机器学习的方法来检测IOT设备中的DDOS攻击
网络安全大菠萝
安全网络web安全物联网
网络异常检测异常检测是识别数据中与预期行为有所不同的数据模式。异常检测技术可以用来区别常用流量与异常攻击流量。常用简单的基于门阀值的检测技术并不适用于IOT的攻击本质。而使用机器学习算法的异常检测模型可以有效降低检测中的假阳性。网络中间件的限制网络中间件的内存和处理能力有限,导致在异常检测方面在算法上有一定的限制。智慧家庭网关路由器用的异常检测框架有以下的特征:·轻量级的特征:路由器必须要处理高带
- 传奇996_23——杀怪掉落,自动捡取,捡取动画
这不比博人传燃?
996传奇游戏引擎
一、杀怪掉落前置:添加地图地图刷怪怪物掉落(术语叫爆率,掉落叫爆率,而且文档上叫爆率)刷怪步骤:在\MirServer\Mir200\Envir\MonItems文件夹中建立以怪物名字为文件名的txt文件写法案例:1/1金币20001/1木剑1/1强效金创药1/1强效金创药二、自动捡取需要设置三个地方:第一步:cfg_item.xls物品表的pickset字段;cfg_equip.xls装备表的p
- 一个经典机器学习案例——良/恶性乳腺癌肿瘤预测
曹文杰1519030112
python机器学习及实践人工智能机器学习
良/恶性乳腺癌肿瘤预测良/恶性乳腺癌肿瘤预测问题是一个十分经典的机器学习问题,简单来说我们需要利用肿块厚度和细胞尺寸这两个特征来判断肿瘤的类型(良性或者是恶性)。数据的下载网站如下:http://note.youdao.com/groupshare/?token=C6B145FA919F41F8ACAAC39EE775441C&gid=93772390我们首先来看一下部分数据ClumpThickn
- 基于机器学习中集成学习的stacking方式进行的金线莲质量鉴别研究(python进行数据处理并完成建模,对品种进行预测)
Life is a joke
PYTHON人工智能机器学习机器学习集成学习人工智能
1.前言金线莲为兰科开唇兰属植物,别名金丝兰、金丝线、金耳环、乌人参、金钱草等,是一种名贵中药材,国内主要产地为较低纬度地区如:福建、台湾、广东、广西、浙江、江西、海南、云南、四川、贵州以及西藏南部[1],被当地人民誉为“药中之王”,福建品种和台湾品种更是其中的上等品种,在治疗肺部炎症、糖尿病、癌症、肾炎、膀胱炎、重症肌无力、风湿性及类风湿性关节炎、高血脂、毒蛇咬伤有着很大的作用[2-3]。由于野
- 软件设计中的“后悔药”-备忘录模式
晚秋贰拾伍
备忘录模式设计模式系统安全软件需求运维开发个人开发
行为型模式的名称、定义、学习难度和使用频率如下表所示:1.如何理解备忘录模式备忘录模式(MementoPattern):在不破坏封装的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态,这样可以在以后将对象恢复到原先保存的状态。它是一种对象行为型模式,其别名为Token。在代码中,备忘录模式通常包含三个主要的角色:原发器(Originator)、备忘录(Memento)和负责人。原发器是需
- 机器学习算法(八):基于BP神经网络的乳腺癌的分类预测
墨枣
机器学习算法神经网络分类人工智能
机器学习算法(八):基于BP神经网络的乳腺癌的分类预测本项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc1.算法简介和应用1.1算法简介BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经
- 国自然青年项目|基于多模态影像组学的乳腺癌分子分型预测研究|基金申请·25-01-20
罗小罗同学
基金申请医学人工智能人工智能国自然
小罗碎碎念今天和大家分享一份国自然青年项目,项目执行期为2021-2023年,直接费用为24万。项目聚焦乳腺癌分子分型预测,综合运用多模态组学数据、影像组学技术和深度学习技术。研究内容包括跨模态医学图像分割、多模态特征提取与融合、模型设计与系统研发。通过提出一系列创新算法,如基于类别中心原型对齐器的图像分割算法、基于自注意力机制与生成对抗网络的聚类算法等,实现了对乳腺癌分子分型的高精度预测,并开发
- 使用scorecardpy库计算woe分箱和iv值
亲持红叶
机器学习风控相关算法人工智能机器学习
woe分箱_iv值计算基于scorecardpy库,乳腺癌数据集importpandasaspdimportnumpyasnpfromsklearn.datasetsimportload_breast_cancerimportscorecardpyasscfromtqdmimportnotebookcancer=load_breast_cancer()df=pd.DataFrame(cancer.
- 清华计算机考研csp,「考研2021」400分跨考清华大学软件学院经验帖
大豆小米
清华计算机考研csp
基本信息:应届武汉大学本科生跨考清华计算机系学硕拟录取。学硕面试结束,一切尘埃落定,趁现在回忆还比较清晰,记录下一年来的奋斗历程,以供诸君参考。择校择校当时拟定的有三所:浙大,北大,清华。然而北大保研名额锐减60%,因此考研也显得异常艰辛,由于近几年对于跨考北大比较友好,且去年第一是武大药院跨考,因此我预感报考信科可能会由于人数爆炸而惨败,老师也很可能由于跨考人数太多而对跨考生变得不友好。去年浙大
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号