数据结构之二叉排序树整理与学习

先看一个需求

给你一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加。

解决方案分析

  1. 使用数组

    数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢.

    数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位置后,后面的数据需整体移动,速度慢。

  2. 使用链式存储-链表

    不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。

3. 重点使用二叉排序树

二叉排序树介绍

二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。
特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:


image

二叉排序树创建和遍历

!一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创建成对应的二叉排序树为 :

代码演示

//创建二叉排序树
class BinarySortTree {

    private Node root;

    public Node getRoot() {
        return root;
    }
    //添加结点的方法
    public void add(Node node) {
        if(root == null) {
            root = node;//如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder() {
        if(root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        
        this.value = value;
    }

//添加结点的方法
    //递归的形式添加结点,注意需要满足二叉排序树的要求
    public void add(Node node) {
        if(node == null) {
            return;
        }
        
        //判断传入的结点的值,和当前子树的根结点的值关系
        if(node.value < this.value) {
            //如果当前结点左子结点为null
            if(this.left == null) {
                this.left = node;
            } else {
                //递归的向左子树添加
                this.left.add(node);
            }
        } else { //添加的结点的值大于 当前结点的值
            if(this.right == null) {
                this.right = node;
            } else {
                //递归的向右子树添加
                this.right.add(node);
            }
            
        }
    }
    
    //中序遍历
    public void infixOrder() {
        if(this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if(this.right != null) {
            this.right.infixOrder();
        }
    }
}

测试方法

public class BinarySortTreeDemo {
    
    public static void main(String[] args) {
        int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
        BinarySortTree binarySortTree = new BinarySortTree();
        //循环的添加结点到二叉排序树
        for(int i = 0; i< arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }

        //中序遍历二叉排序树
        System.out.println("中序遍历二叉排序树~");
        binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
    }

结果:

image

删除节点

思路分析

image

代码示例

//创建二叉排序树
class BinarySortTree {

    private Node root;

    public Node getRoot() {
        return root;
    }

    //查找要删除的结点
    public Node search(int value) {
        if(root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }
    
    //查找父结点
    public Node searchParent(int value) {
        if(root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }
    
    //编写方法: 
    //1. 返回的 以node 为根结点的二叉排序树的最小结点的值
    //2. 删除node 为根结点的二叉排序树的最小结点
    /**
     * 
     * @param node 传入的结点(当做二叉排序树的根结点)
     * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        //循环的查找左子节点,就会找到最小值
        while(target.left != null) {
            target = target.left;
        }
        //这时 target就指向了最小结点
        //删除最小结点
        delNode(target.value);
        return target.value;
    }
    
    
    //删除结点
    public void delNode(int value) {
        if(root == null) {
            return;
        }else {
            //1.需求先去找到要删除的结点  targetNode
            Node targetNode = search(value);
            //如果没有找到要删除的结点
            if(targetNode == null) {
                return;
            }
            //如果我们发现当前这颗二叉排序树只有一个结点
            if(root.left == null && root.right == null) {
                root = null;
                return;
            }
            
            //去找到targetNode的父结点
            Node parent = searchParent(value);
            //如果要删除的结点是叶子结点
            if(targetNode.left == null && targetNode.right == null) {
                //判断targetNode 是父结点的左子结点,还是右子结点
                if(parent.left != null && parent.left.value == value) { //是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {//是由子结点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;

            } else { // 删除只有一颗子树的结点
                //如果要删除的结点有左子结点 
                if(targetNode.left != null) {
                    if(parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if(parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else { //  targetNode 是 parent 的右子结点
                            parent.right = targetNode.left;
                        } 
                    } else {
                        root = targetNode.left;
                    }
                } else { //如果要删除的结点有右子结点 
                    if(parent != null) {
                        //如果 targetNode 是 parent 的左子结点
                        if(parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else { //如果 targetNode 是 parent 的右子结点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }
                
            }
            
        }
    }
    
//创建Node结点
class Node {
    int value;
    Node left;
    Node right;
    public Node(int value) {
        
        this.value = value;
    }
    
    //查找要删除的结点
    /**
     * 
     * @param value 希望删除的结点的值
     * @return 如果找到返回该结点,否则返回null
     */
    public Node search(int value) {
        if(value == this.value) { //找到就是该结点
            return this;
        } else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
            //如果左子结点为空
            if(this.left  == null) {
                return null;
            }
            return this.left.search(value);
        } else { //如果查找的值不小于当前结点,向右子树递归查找
            if(this.right == null) {
                return null;
            }
            return this.right.search(value);
        }
        
    }
    //查找要删除结点的父结点
    /**
     * 
     * @param value 要找到的结点的值
     * @return 返回的是要删除的结点的父结点,如果没有就返回null
     */
    public Node searchParent(int value) {
        //如果当前结点就是要删除的结点的父结点,就返回
        if((this.left != null && this.left.value == value) || 
                (this.right != null && this.right.value == value)) {
            return this;
        } else {
            //如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
            if(value < this.value && this.left != null) {
                return this.left.searchParent(value); //向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value); //向右子树递归查找
            } else {
                return null; // 没有找到父结点
            }
        }
    }   
}

你可能感兴趣的:(数据结构之二叉排序树整理与学习)