- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】工业相机
格图素书
数码相机目标检测人工智能
目录知识储备深度相机1TOF2双目视觉3结构光4智能门锁应用5手机应用算法原理相机的成像与标定模型相机标定的实施·标定过程的算法实施相机标定的扩展CCD工业相机、镜头倍率及相关参数计算方法知识储备深度相机1TOF1.1Kinectv2Kinectv2是Microsoft在2014年发售的,如图1-1所示。相比于Kinectv1在硬件和软件上作出了很大的进化,且在深度测量的系统和非系统误差方面表现出
- 双目视觉测宽仪系列 模拟人眼高精测量!
蓝鹏测控
其他制造
双目视觉测宽仪系列基于机器视觉原理,两个工业相机就像人的双眼,可以形成立体视觉,这样就可以得到足够的信息判断被测物的距离,修正和消除距离变化对测量的影响,在线检测生产线上产品的宽度值。可广泛应用于轧制材料(热轧、冷轧)、机械部件、钢板、铁板、金属板、厚板等板材类产品的在线检测。具有非接触、实时测量、精度高等优点。技术参数:测量范围:500-3000mm(定制)测量方式:双工业相机,自发光/光源补光
- 科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)
JANGHIGH
科普类无人驾驶自动驾驶人工智能机器学习
科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)双目视觉在自动驾驶中的应用虽然具有许多优势,但也存在一些问题和挑战,这些问题在不同的驾驶环境和条件下可能会有所不同。以下是一些主要问题及其可能的解决方案:立体匹配和视差计算:双目视觉的核心在于通过计算两幅图像之间的视差来获取深度信息。然而,立体匹配算法在处理遮挡、无特征区域或具有重复图案的高纹理区域时可能会出现精度问题。解决方案包括使
- 科普类(双目视觉)——快速索引
JANGHIGH
科普类无人驾驶快速索引自动驾驶
科普类(双目视觉)——快速索引科普类——双目视觉在无人驾驶汽车中的应用(一)科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)科普类——双目视觉系统在无人驾驶汽车中的安装位置(四)科普类——基线的设计对于系统的性能的直接影响(五)科普类——百度Apollo使用的双目系统的硬件型号(六)科普类——进行基线设计、系统测试和优化的立体视
- 科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)
JANGHIGH
科普类无人驾驶汽车人工智能
科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)在无人驾驶汽车中,视觉SLAM(SimultaneousLocalizationandMapping,即同时定位与地图构建)是一种关键技术,它允许车辆在未知环境中进行自我定位和地图构建。双目视觉系统在视觉SLAM中的应用起到了以下作用:精确定位:双目视觉系统通过计算两幅图像之间的视差,可以提供精确的深度信息。这些信息有助于SLAM算法更准确地估
- 科普类——双目视觉在无人驾驶汽车中的应用(一)
JANGHIGH
科普类无人驾驶汽车人工智能
科普类——双目视觉在无人驾驶汽车中的应用(一)双目视觉在无人驾驶汽车中的应用主要体现在以下几个方面:深度感知与距离测量:双目视觉系统通过两个摄像头同时捕捉同一场景的图像,利用视差(即同一物体在两幅图像中的位置差异)来计算物体的深度信息。这种基于视差的方法可以提供精确的距离测量,帮助无人驾驶汽车判断前方物体的距离,从而进行安全驾驶决策。障碍物检测与避障:双目视觉能够识别并测量前方的障碍物,包括车辆、
- 科普类—— 双目视觉系统在无人驾驶汽车中的安装位置(四)
JANGHIGH
科普类无人驾驶汽车人工智能计算机视觉
科普类——双目视觉系统在无人驾驶汽车中的安装位置(四)在无人驾驶汽车中,双目视觉系统的安装位置和两个相机之间的安装间距(基线)对于系统的性能至关重要。这些参数的选择需要基于工程数据和实际应用需求来确定。以下是一些关于双目视觉系统安装位置和间距的一般指导原则:安装位置:双目摄像头通常安装在车辆的前部,以模拟人类驾驶员的视线。它们应该位于车辆的中心线附近,以确保视野覆盖车辆前方的主要区域。安装高度通常
- 双目相机立体匹配基础
极客范儿
传感器标定双目相机立体匹配
双目匹配就是用左相机和右相机去拍摄同一个点,目的是找到三维世界的同一个点,也就是在左相机和右相机中的成像点之间的像素差(视差),根据视差去求解深度,那么找到左相机点到右相机的同一个对应点这个过程就是双目相机立体匹配。一、双目视觉流程双目视觉流程是通过双目相机的左相机和右相机拍摄标定板的图片制作标定(离线),在线拍摄后进行矫正。满足两个相机是平行的要求,做匹配点也能满足从一维在同一行去搜索,接着进行
- 阅读文章:《编码结构光投影双目视觉三维测量技术研究》
盗将_6ab3
来源:知网《编码结构光投影双目视觉三维测量技术研究》_肖亮主要理解文章中双目结构光系统的测量原理,主要包括投影图案的编码解码技术、参数标定以及点云的生成与融合拼接。此次学习:编码方式之二进制编码、格雷码编码1.编码结构光image.png文章中选择了时域编码中的格雷码编码。所谓时间编码,文中这样说道:“时域编码是一种常用的编码策略,在这种编码方案中一系列的简单图案按时间先后顺序投影到被测物表面,一
- [Python图像处理] 使用OpenCV创建深度图
AI technophile
Python图像处理实战python图像处理计算机视觉
使用OpenCV创建深度图双目视觉创建深度图相关链接双目视觉在传统的立体视觉中,两个摄像机彼此水平移动,用于获得场景上的两个不同视图(作为立体图像),就像人类的双目视觉系统:通过比较这两个图像,可以以视差的形式获得相对深度信息,该视差编码对应图像点的水平坐标的差异。两个立体图像中单个像素的位移量称为视差(disparity),像素的视差与其在场景中的深度成反比。可以用灰度值对每个像素的视差进行编码
- 11. 双目视觉之立体视觉基础
宛如新生
slam中的标定问题数码相机
目录1.深度恢复1.1单目相机缺少深度信息1.2如何恢复场景深度?1.3深度恢复的思路2.对极几何约束2.1直观感受2.2数学上的描述1.深度恢复1.1单目相机缺少深度信息之前学习过相机模型,最经典的就是小孔成像模型。我们知道相机通过小孔成像模型对世界点的观测是缺少深度信息的。我们得到的只是世界点在相机平面上的一个投影。如下图,世界点P只要是在那条红色线上,他在相机上的成像位置就是P‘,所以我们无
- 12. 双目视觉之极线矫正
宛如新生
slam中的标定问题数码相机
目录1.为何要进行极线矫正?2.极线矫正过程。1.为何要进行极线矫正?之前的文章立体视觉基础中介绍单目相机无法获得深度信息,我们可以通过多个相机来实现立体视觉。通过两个相机对某场景同时观测时,当我们知道了相机的内(外)参以及两者之间的基线,然后通过某种方式找到两相机对同一世界点的观测的关联关系(类似特征匹配),就可以计算出视差,最终通过下列公式计算出观测到的世界点的深度。我们假设双目相机已经标定完
- 双目立体视觉——视差图(stereo matching)三种相似度算法实现
7lingqi7
1024程序员节python笔记学习
目录双目立体视觉的理解:平行视图的极几何(第二种实现视差图的思路)图像校正(cameracalibration)实现——相似度匹配,视差计算重要影响参数实验报告讨论部分SGBM算法示例,这个效果更好,速度也更快。【双目视觉】SGBM算法应用(Python版)_落叶随峰的博客-CSDN博客任务:生成视差图关键词:视差原理(平行视图的极几何),图像校正,相似度匹配,视差计算和匹配图片数据集:visio
- Ubuntu 18.04 ———(Intel RealSense D435i)安装kalibr + 双目视觉与IMU标定(2022年)
@曾记否
双目相机ubuntu自动驾驶linux
Ubuntu18.04———(IntelRealSenseD435i)安装kalibr+双目视觉与IMU标定(2022年)一、安装标定工具1.下载编译code_utils2.下载编译imu_utils3.安装kalibr解决:kalibr_calibrate_cameras:未找到命令二、imu标定1.写标定参数文件2.然后运行启动文件3.编写启动文件4.录制imu数据包5.运行校准程序6.回放数
- 在线双目测宽仪 板材实时监测和数据分析!
蓝鹏测控
数码相机
在各种板材类生产领域里,在线品质检测技术都是非常重要的,它很大程度上决定了生产的质量。在线双目测宽仪就是当前很受欢迎的一种宽度在线检测设备,它采用了双目视觉检测技术,实现宽度尺寸的在线检测,功能十分强大,使用起来也非常的便利,目前已经被普遍应用到了钢板、扁钢等行业中。测量原理再利用相机测量宽度时,由于单个相机在成像时存在“近大远小”的现象,并且单靠摄入的图像无法知道被测物的距离,所以由被测物的跳动
- 基于 ZYNQ 的双目视觉图像采集系统设计(二)
QYH2023
fpga开发
Image_controller模块包含2个子模块,如图1所示。I2C_OV5640_Init_RGB565.v模块实现IIC的接口协议和初始化配置,其下有两个子模块:I2C_Controller.v模块实现IIC的读写控制时序,I2C_OV5640_RGB565_Config.v模块则产生IIC寄存器初始化配置的地址和数据;image_capture.v模块实现图像采集和缓存功能。图1.Imag
- 基于 ZYNQ 的双目视觉图像采集系统设计(四)
QYH2023
fpga开发
1、axi_hp0_wr.v模块代码解析该模块实现AXIHP总线写入数据到DDR3的操作。该模块的接口如下。rst_n为系统复位信号;i_clk、i_data_rst_n、i_data_en和i_data为FPGA逻辑需要写入到DDR3的数据输入接口。i_clk为同步时钟信号,i_data_rst_n用于复位FIFO,i_data_en拉高表示数据总线i_data有效,将被写入到FIFO中缓存。余
- 基于 ZYNQ 的双目视觉图像采集系统设计(一)
QYH2023
fpga开发
1、视频采集系统的整体架构如图1所示,这是整个视频采集系统的原理框图。图1视频采集系统架构上电初始,FPGA通过IIC接口对CMOSSensor进行寄存器初始化配置。这些初始化的基本参数,即初始化地址对应的初始化数据都存储在一个预先配置好的FPGA片内ROM中。(这些初始化的参数来源于CMOSSensor芯片手册,这里使用的是OV5640摄像头,要学好FPGA芯片手册一定要会看)在初始化配置完成后
- 论文阅读:Stereo Visual-Inertial Odometry With Online Initialization and Extrinsic Self-Calibration
独孤西
论文阅读论文阅读
前言StereoVisual-InertialOdometryWithOnlineInitializationandExtrinsicSelf-Calibration这篇论文是2023年TIM上的一篇文章,主要是针对双目视觉惯性里程计的初始化问题,实现了一个除了估计IMU偏置,速度,重力,IMU-相机外参和平移比例因子的初始值等参数,同时还可以估计外参的初始化系统。一、问题背景视觉和IMU互补。不
- ZED使用指南(八)Depth Sensing
Happy_Cabbage
ZED2计算机视觉人工智能
ZED立体相机再现了人类双目视觉的工作方式。通过比较左眼和右眼看到的两种视图,不仅可以推断深度,还可以推断空间中的3D运动。ZED立体相机可以捕捉到场景的高分辨率3D视频,通过比较左右图像之间的像素位移可以估计深度和运动。深度感知深度感知是指确定物体之间的距离,以三维的角度看世界。到目前为止,深度传感器仅限于近距离和室内的深度感知,限制了其在手势控制和身体跟踪方面的应用。ZED是第一个使用立体视觉
- 基于双目RGB图像和图像深度信息的三维室内场景建模matlab仿真
简简单单做算法
MATLAB算法开发#三维重建matlab双目RGB图像图像深度信息三维室内场景建模
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述4.1双目视觉原理4.2深度信息获取4.3表面重建5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022a3.部分核心程序..........................................................................%读取左右RGB图像和对
- ISP IC/FPGA设计-第一部分-MT9V034摄像头分析(0)
芯王国
ISP设计接口隔离原则MT9V034CMOS传感器
MT9V034为CMOS图像传感器,有着极其优秀的图像成像性能,同时支持丰富的功能用于isp的开发;MT9V034的HDR宽动态、10bit数据深度、RAW格式(bayer阵列)图像、dvp和lvds接口、60fps正是学习isp开发的理想传感器;MT9V034有两款类型,一个是单色型号,直接输出灰度的图像,在机器视觉领域应用很广,我的双目视觉毕业设计也是采用这款摄像头;另一个就是彩色款,不过输出
- 【实验记录】(杂七杂八)
白白白白白kkk
笔记
1.基于视觉语义路标的智能手机室内定位与建图研究_高煜昕p19介绍了智能终端的数据集ADVIO数据集,使用iPhone采集,针对视觉和惯导联合开发,具有描述真是复杂场景以及高质量真值的优点。p20论证了vins-mono、vins-fusion和orb-slam3等主流slam框架的性能,对比发现后vins-mono运行ADVIO数据集时的定位与建图更优秀。突发奇想:用双目视觉的回环后的值可以做“
- 视觉测量—相机标定
Mr. a zhen
计算机视觉
随着计算机视觉的飞速发展,计算机视觉已经越来越多的应用于空间几何尺寸的精确测量和定位,摄像机作为视觉测量的关键部件,相机标定自然是视觉测量的一项重要工作。1、标定原因在视觉测量过程中,为确定空间物体特征点的三维几何位置与其在图像中对应点之间的相互关系,必须建立建立相机成像几何模型并矫正透镜畸变,几何模型参数可以认为是相机参数,相机标定就是准确获得相机参数的过程。视觉测量分为单目视觉,双目视觉以及多
- 图像特征提取--ORB算法
时义龙
特征匹配检测算法算法c++开发语言
实时性特征检测可以分为两个部分:图像特征提取与匹配ORB(OrientedFASTandRotatedBRIEF)该特征检测算法是在著名的FAST特征检测和BRIEF特征描述子的基础上提出来的,其运行时间远远优于SIFT和SURF,可应用于实时性特征检测。遇到过这样一个问题,在双目视觉中,使用矫正的两张图片,计算视差时,需要找到匹配点。自己写了一个基于灰度值的线特征匹配算法,但是效果会受到图像效果
- 张正友相机标定(概括总结)
*地瓜*
计算机视觉相机标定张正友张氏标定
目录计算机视觉分类计算机视觉应用相机标定四种坐标系的转换求解内参求解畸变参量实验结果计算机视觉分类这算是本周博主要做的报告的一次腹稿。咱们先从计算机视觉讲起。计算机视觉的定义就是用计算机模拟人的眼睛,让计算机可以通过拍照或视频的方式看到物体,然后通过特征点检测以及匹配等方式识别物体,进而进行追踪,重建等操作,主要就是图像处理。我们从计算机使用的视觉传感器的数量可以将计算机视觉分为单目视觉,双目视觉
- OpenCV快速入门:相机标定——单目视觉和双目视觉
92岁高龄码农
Python#OpenCV数码相机opencv人工智能
文章目录前言一、相机标定的基本原理1.1相机模型与坐标系1.1.1相机模型1.1.2坐标系1.2相机内参与外参1.2.1内部参数1.2.2外部参数1.3镜头畸变1.4透视变换1.5标定的重要性和应用场景二、单目视觉2.1单目视觉的原理2.1.1单目视觉的原理2.1.2单目视觉的公式2.1.3应用领域2.2实现单目视觉标定的步骤2.2.1准备标定板2.2.2捕获标定图像2.2.3提取角点2.2.4计
- 3D重建算法综述
小白学视觉
算法神经网络python计算机视觉机器学习
点击上方“小白学视觉”,选择加"星标"或“置顶”重磅干货,第一时间送达三维重建算法广泛应用于手机等移动设备中,常见的算法有SfM,REMODE和SVO等。2.2双目/多目视觉双目视觉主要利用左右相机得到的两幅校正图像找到左右图片的匹配点,然后根据几何原理恢复出环境的三维信息。但该方法难点在于左右相机图片的匹配,匹配地不精确都会影响最后算法成像的效果。多目视觉采用三个或三个以上摄像机来提高匹配的精度
- 单目测距+代码部署(目标检测+车辆/行人等测距)
从懒虫到爬虫
人工智能计算机视觉
本文主要讲述了如何运用单目摄像头进行距离测量,在完成yolo目标检测后我们可以对检测到的目标框进行距离测量。单目视觉测距与双目视觉测距对比测距在智能驾驶的应用中发挥着重要作用。测距方法主要包含两类:主动测距与被动测距,主动测距是当前研究的热点内容之一。主动测距方法包括采用传感器、摄像机、激光雷达等车载设备进行测距。摄像头由于价格相对低廉且性能稳定应用较为广泛,本文采用摄像头进行距离测量。单目测距与
- 双目视觉计算三维坐标
叫小侯的小白程序员
智在飞翔比赛记录数码相机计算机视觉
一、原理双目视觉的基本原理,以及公式推导,我参考的b站上的视频,链接如下:2-线性相机模型-LinearCameraModel-CameraCalibration_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Q34y1n7ot/?p=2&spm_id_from=333.880.my_history.page.click&vd_source=3b6c
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不