在类中声明的实例变量,其值是每一个对象独立的。但是有些成员变量的值不需要或不能每一个对象单独存储一份,即有些成员变量和当前类的对象无关。
在类中声明的实例方法,在类的外面必须要先创建对象,才能调用。但是有些方法的调用和当前类的对象无关,那么创建对象就有点麻烦了。
此时,就需要将和当前类的对象无关的成员变量、成员方法声明为静态的(static)。
有static修饰的成员变量就是静态变量。
【修饰符】 class 类{
【其他修饰符】 static 数据类型 静态变量名;
}
静态变量的默认值规则和实例变量一样。
静态变量值是所有对象共享。
静态变量的值存储在方法区。
静态变量在本类中,可以在任意方法、代码块、构造器中直接使用。
如果权限修饰符允许,在其他类中可以通过“类名.静态变量”直接访问,也可以通过“对象.静态变量”的方式访问(但是更推荐使用类名.静态变量的方式)。
静态变量的get/set方法也静态的,当局部变量与静态变量重名时,使用“类名.静态变量”进行区分。
分类 | 数据类型 | 默认值 |
---|---|---|
基本类型 | 整数(byte,short,int,long) | 0 |
浮点数(float,double) | 0.0 | |
字符(char) | ‘\u0000’ | |
布尔(boolean) | false | |
数据类型 | 默认值 | |
引用类型 | 数组,类,接口 | null |
演示:
package com.atguigu.keyword;
public class Employee {
private static int total;//这里私有化,在类的外面必须使用get/set方法的方式来访问静态变量
static String company; //这里缺省权限修饰符,是为了演示在类外面演示“类名.静态变量”的方式访问
private int id;
private String name;
{
//两个构造器的公共代码可以提前到非静态代码块
total++;
id = total; //这里使用total静态变量的值为id属性赋值
}
public Employee() {
}
public Employee(String name) {
this.name = name;
}
public void setId(int id) {
this.id = id;
}
public int getId() {
return id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public static int getTotal() {
return total;
}
public static void setTotal(int total) {
Employee.total = total;
}
@Override
public String toString() {
return "Employee{company = " + company + ",id = " + id + " ,name=" + name +"}";
}
}
package com.atguigu.keyword;
public class TestStaticVariable {
public static void main(String[] args) {
//静态变量total的默认值是0
System.out.println("Employee.total = " + Employee.getTotal());
Employee c1 = new Employee("张三");
Employee c2 = new Employee();
System.out.println(c1);//静态变量company的默认值是null
System.out.println(c2);//静态变量company的默认值是null
System.out.println("Employee.total = " + Employee.getTotal());//静态变量total值是2
Employee.company = "尚硅谷";
System.out.println(c1);//静态变量company的值是尚硅谷
System.out.println(c2);//静态变量company的值是尚硅谷
//只要权限修饰符允许,虽然不推荐,但是也可以通过“对象.静态变量”的形式来访问
c1.company = "超级尚硅谷";
System.out.println(c1);//静态变量company的值是超级尚硅谷
System.out.println(c2);//静态变量company的值是超级尚硅谷
}
}
有static修饰的成员方法就是静态方法。
【修饰符】 class 类{
【其他修饰符】 static 返回值类型 方法名(形参列表){
方法体
}
}
package com.atguigu.keyword;
public class Father {
public static void method(){
System.out.println("Father.method");
}
public static void fun(){
System.out.println("Father.fun");
}
}
package com.atguigu.keyword;
public class Son extends Father{
// @Override //尝试重写静态方法,加上@Override编译报错,去掉Override不报错,但是也不是重写
public static void fun(){
System.out.println("Son.fun");
}
}
package com.atguigu.keyword;
public class TestStaticMethod {
public static void main(String[] args) {
Father.method();
Son.method();//继承静态方法
Father f = new Son();
f.method();//执行Father类中的method
}
}
如果想要为静态变量初始化,可以直接在静态变量的声明后面直接赋值,也可以使用静态代码块。
在代码块的前面加static,就是静态代码块。
【修饰符】 class 类{
static{
静态代码块
}
}
每一个类的静态代码块只会执行一次。
静态代码块的执行优先于非静态代码块和构造器。
package com.atguigu.keyword;
public class Chinese {
// private static String country = "中国";
private static String country;
private String name;
{
System.out.println("非静态代码块,country = " + country);
}
static {
country = "中国";
System.out.println("静态代码块");
}
public Chinese(String name) {
this.name = name;
}
}
package com.atguigu.keyword;
public class TestStaticBlock {
public static void main(String[] args) {
Chinese c1 = new Chinese("张三");
Chinese c2 = new Chinese("李四");
}
}
静态代码块在类初始化时执行,只执行一次
非静态代码块在实例初始化时执行,每次new对象都会执行
(1)类的初始化就是为静态变量初始化。实际上,类初始化的过程时在调用一个()方法,而这个方法是编译器自动生成的。编译器会将如下两部分的所有代码,按顺序合并到类初始化()方法体中。
静态类成员变量的显式赋值语句
静态代码块中的语句
(2)每个类初始化只会进行一次,如果子类初始化时,发现父类没有初始化,那么会先初始化父类。
(3)类的初始化一定优先于实例初始化。
package com.atguigu.keyword;
public class Fu{
static{
System.out.println("Fu静态代码块1,a = " + Fu.a);
}
private static int a = 1;
static{
System.out.println("Fu静态代码块2,a = " + a);
}
public static void method(){
System.out.println("Fu.method");
}
}
package com.atguigu.keyword;
public class TestClassInit {
public static void main(String[] args) {
Fu.method();
}
}
package com.atguigu.keyword;
public class Zi extends Fu{
static{
System.out.println("Zi静态代码块");
}
}
package com.atguigu.keyword;
public class TestZiInit {
public static void main(String[] args) {
Zi z = new Zi();
}
}
package com.atguigu.keyword;
public class Fu{
static{
System.out.println("Fu静态代码块1,a = " + Fu.a);
}
private static int a = 1;
static{
System.out.println("Fu静态代码块2,a = " + a);
}
{
System.out.println("Fu非静态代码块");
}
public Fu(){
System.out.println("Fu构造器");
}
public static void method(){
System.out.println("Fu.method");
}
}
package com.atguigu.keyword;
public class Zi extends Fu{
static{
System.out.println("Zi静态代码块");
}
{
System.out.println("Zi非静态代码块");
}
public Zi(){
System.out.println("Zi构造器");
}
}
package com.atguigu.keyword;
public class TestZiInit {
public static void main(String[] args) {
Zi z1 = new Zi();
Zi z2 = new Zi();
}
}
静态的类变量和静态的方法可以在本类的任意方法、代码块、构造器中直接访问。
非静态的实例变量和非静态的方法只能在本类的非静态的方法、非静态代码块、构造器中直接访问。
即:
静态的类变量和静态的方法可以通过“类名.”的方式直接访问;也可以通过“对象.“的方式访问。(但是更推荐使用==”类名.”==的方式)
非静态的实例变量和非静态的方法只能通过“对象."方式访问。
静态的方法和静态的代码块中,不允许出现this和super关键字,如果有重名问题,使用“类名.”进行区别。
非静态的方法和非静态的代码块中,可以使用this和super关键字。
如果大量使用另一个类的静态成员,可以使用静态导入,简化代码。
import static 包.类名.静态成员名;
import static 包.类名.*;
演示:
package com.atguigu.keyword;
import static java.lang.Math.*;
public class TestStaticImport {
public static void main(String[] args) {
//使用Math类的静态成员
System.out.println(Math.PI);
System.out.println(Math.sqrt(9));
System.out.println(Math.random());
System.out.println("----------------------------");
System.out.println(PI);
System.out.println(sqrt(9));
System.out.println(random());
}
}
某些类型的对象是有限的几个,这样的例子举不胜举:
枚举类型本质上也是一种类,只不过是这个类的对象是固定的几个,而不能随意让用户创建。
在JDK1.5之前,需要程序员自己通过特殊的方式来定义枚举类型。
在JDK1.5之后,Java支持enum关键字来快速的定义枚举类型。
在JDK1.5之前如何声明枚举类呢?
示例代码:
public class Season{
public static final Season SPRING = new Season();
public static final Season SUMMER = new Season();
public static final Season AUTUMN = new Season();
public static final Season WINTER = new Season();
private Season(){
}
public String toString(){
if(this == SPRING){
return "春";
}else if(this == SUMMER){
return "夏";
}else if(this == AUTUMN){
return "秋";
}else{
return "冬";
}
}
}
public class TestSeason {
public static void main(String[] args) {
Season spring = Season.SPRING;
System.out.println(spring);
}
}
【修饰符】 enum 枚举类名{
常量对象列表
}
【修饰符】 enum 枚举类名{
常量对象列表;
其他成员列表;
}
示例代码:
package com.atguigu.enumeration;
public enum Week {
MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY,SATURDAY,SUNDAY
}
public class TestEnum {
public static void main(String[] args) {
Season spring = Season.SPRING;
System.out.println(spring);
}
}
枚举类的要求和特点:
示例代码:
package com.atguigu.enumeration;
public enum Week {
MONDAY("星期一"),
TUESDAY("星期二"),
WEDNESDAY("星期三"),
THURSDAY("星期四"),
FRIDAY("星期五"),
SATURDAY("星期六"),
SUNDAY("星期日");
private final String description;
private Week(String description){
this.description = description;
}
@Override
public String toString() {
return super.toString() +":"+ description;
}
}
package com.atguigu.enumeration;
public class TestWeek {
public static void main(String[] args) {
Week week = Week.MONDAY;
System.out.println(week);
switch (week){
case MONDAY:
System.out.println("怀念周末,困意很浓");break;
case TUESDAY:
System.out.println("进入学习状态");break;
case WEDNESDAY:
System.out.println("死撑");break;
case THURSDAY:
System.out.println("小放松");break;
case FRIDAY:
System.out.println("又信心满满");break;
case SATURDAY:
System.out.println("开始盼周末,无心学习");break;
case SUNDAY:
System.out.println("一觉到下午");break;
}
}
}
1.String toString(): 默认返回的是常量名(对象名),可以继续手动重写该方法!
2.String name():返回的是常量名(对象名)
3.int ordinal():返回常量的次序号,默认从0开始
4.枚举类型[] values():返回该枚举类的所有的常量对象,返回类型是当前枚举的数组类型,是一个静态方法
5.枚举类型 valueOf(String name):根据枚举常量对象名称获取枚举对象
示例代码:
package com.atguigu.enumeration;
import java.util.Scanner;
public class TestEnumMethod {
public static void main(String[] args) {
Week[] values = Week.values();
for (int i = 0; i < values.length; i++) {
System.out.println((values[i].ordinal()+1) + "->" + values[i].name());
}
System.out.println("------------------------");
Scanner input = new Scanner(System.in);
System.out.print("请输入星期值:");
int weekValue = input.nextInt();
Week week = values[weekValue-1];
System.out.println(week);
System.out.print("请输入星期名:");
String weekName = input.next();
week = Week.valueOf(weekName);
System.out.println(week);
input.close();
}
}
Java提供了两个类型系统,基本类型与引用类型,使用基本类型在于效率,然而当要使用只针对对象设计的API或新特性(例如泛型),那么基本数据类型的数据就需要用包装类来包装。
序号 | 基本数据类型 | 包装类(java.lang包) |
---|---|---|
1 | byte | Byte |
2 | short | Short |
3 | int | Integer |
4 | long | Long |
5 | float | Float |
6 | double | Double |
7 | char | Character |
8 | boolean | Boolean |
9 | void | Void |
装箱:把基本数据类型转为包装类对象。
转为包装类的对象,是为了使用专门为对象设计的API和特性
拆箱:把包装类对象拆为基本数据类型。
转为基本数据类型,一般是因为需要运算,Java中的大多数运算符是为基本数据类型设计的。比较、算术等
基本数值---->包装对象
Integer obj1 = new Integer(4);//使用构造函数函数
Integer obj2 = Integer.valueOf(4);//使用包装类中的valueOf方法
包装对象---->基本数值
Integer obj = new Integer(4);
int num1 = obj.intValue();
JDK1.5之后,可以自动装箱与拆箱。
注意:只能与自己对应的类型之间才能实现自动装箱与拆箱。
Integer i = 4;//自动装箱。相当于Integer i = Integer.valueOf(4);
i = i + 5;//等号右边:将i对象转成基本数值(自动拆箱) i.intValue() + 5;
//加法运算完成后,再次装箱,把基本数值转成对象。
Integer i = 1;
Double d = 1;//错误的,1是int类型
(1)把基本数据类型转为字符串
int a = 10;
//String str = a;//错误的
//方式一:
String str = a + "";
//方式二:
String str = String.valueOf(a);
(2)把字符串转为基本数据类型
String转换成对应的基本类型 ,除了Character类之外,其他所有包装类都具有parseXxx静态方法可以将字符串参数转换为对应的基本类型,例如:
public static int parseInt(String s)
:将字符串参数转换为对应的int基本类型。public static long parseLong(String s)
:将字符串参数转换为对应的long基本类型。public static double parseDouble(String s)
:将字符串参数转换为对应的double基本类型。或把字符串转为包装类,然后可以自动拆箱为基本数据类型
public static Integer valueOf(String s)
:将字符串参数转换为对应的Integer包装类,然后可以自动拆箱为int基本类型public static Long valueOf(String s)
:将字符串参数转换为对应的Long包装类,然后可以自动拆箱为long基本类型public static Double valueOf(String s)
:将字符串参数转换为对应的Double包装类,然后可以自动拆箱为double基本类型注意:如果字符串参数的内容无法正确转换为对应的基本类型,则会抛出java.lang.NumberFormatException
异常。
int a = Integer.parseInt("整数的字符串");
double d = Double.parseDouble("小数的字符串");
boolean b = Boolean.parseBoolean("true或false");
int a = Integer.valueOf("整数的字符串");
double d = Double.valueOf("小数的字符串");
boolean b = Boolean.valueOf("true或false");
Integer.MAX_VALUE和Integer.MIN_VALUE
Long.MAX_VALUE和Long.MIN_VALUE
Double.MAX_VALUE和Double.MIN_VALUE
Character.toUpperCase('x');
Character.toLowerCase('X');
Integer.toBinaryString(int i)
Integer.toHexString(int i)
Integer.toOctalString(int i)
Double.compare(double d1, double d2)
Integer.compare(int x, int y)
包装类 | 缓存对象 |
---|---|
Byte | -128~127 |
Short | -128~127 |
Integer | -128~127 |
Long | -128~127 |
Float | 没有 |
Double | 没有 |
Character | 0~127 |
Boolean | true和false |
Integer a = 1;
Integer b = 1;
System.out.println(a == b);//true
Integer i = 128;
Integer j = 128;
System.out.println(i == j);//false
Integer m = new Integer(1);//新new的在堆中
Integer n = 1;//这个用的是缓冲的常量对象,在方法区
System.out.println(m == n);//false
Integer x = new Integer(1);//新new的在堆中
Integer y = new Integer(1);//另一个新new的在堆中
System.out.println(x == y);//false
Double d1 = 1.0;
Double d2 = 1.0;
System.out.println(d1==d2);//false 比较地址,没有缓存对象,每一个都是新new的
Integer i = 1000;
double j = 1000;
System.out.println(i==j);//true 会先将i自动拆箱为int,然后根据基本数据类型“自动类型转换”规则,转为double比较
Integer i = 1000;
int j = 1000;
System.out.println(i==j);//true 会自动拆箱,按照基本数据类型进行比较
Integer i = 1;
Double d = 1.0
System.out.println(i==d);//编译报错
public class TestExam {
public static void main(String[] args) {
int i = 1;
Integer j = new Integer(2);
Circle c = new Circle();
change(i,j,c);
System.out.println("i = " + i);//1
System.out.println("j = " + j);//2
System.out.println("c.radius = " + c.radius);//10.0
}
/*
* 方法的参数传递机制:
* (1)基本数据类型:形参的修改完全不影响实参
* (2)引用数据类型:通过形参修改对象的属性值,会影响实参的属性值
* 这类Integer等包装类对象是“不可变”对象,即一旦修改,就是新对象,和实参就无关了
*/
public static void change(int a ,Integer b,Circle c ){
a += 10;
// b += 10;//等价于 b = new Integer(b+10);
c.radius += 10;
/*c = new Circle();
c.radius+=10;*/
}
}
class Circle{
double radius;
}
抽象:即不具体、或无法具体
例如:当我们声明一个几何图形类:圆、矩形、三角形类等,发现这些类都有共同特征:求面积、求周长、获取图形详细信息。那么这些共同特征应该抽取到一个公共父类中。但是这些方法在父类中又无法给出具体的实现,而是应该交给子类各自具体实现。那么父类在声明这些方法时,就只有方法签名,没有方法体,我们把没有方法体的方法称为抽象方法。Java语法规定,包含抽象方法的类必须是抽象类。
抽象类的语法格式
【权限修饰符】 abstract class 类名{
}
【权限修饰符】 abstract class 类名 extends 父类{
}
抽象方法的语法格式
【其他修饰符】 abstract 返回值类型 方法名(【形参列表】);
注意:抽象方法没有方法体
代码举例:
public abstract class Animal {
public abstract void eat();
}
public class Cat extends Animal {
public void run (){
System.out.println("小猫吃鱼和猫粮");
}
}
public class CatTest {
public static void main(String[] args) {
// 创建子类对象
Cat c = new Cat();
// 调用eat方法
c.eat();
}
}
此时的方法重写,是子类对父类抽象方法的完成实现,我们将这种方法重写的操作,也叫做实现方法。
关于抽象类的使用,以下为语法上要注意的细节,虽然条目较多,但若理解了抽象的本质,无需死记硬背。
抽象类不能创建对象,如果创建,编译无法通过而报错。只能创建其非抽象子类的对象。
理解:假设创建了抽象类的对象,调用抽象的方法,而抽象方法没有具体的方法体,没有意义。
抽象类中,也有构造方法,是供子类创建对象时,初始化父类成员变量使用的。
理解:子类的构造方法中,有默认的super()或手动的super(实参列表),需要访问父类构造方法。
抽象类中,不一定包含抽象方法,但是有抽象方法的类必定是抽象类。
理解:未包含抽象方法的抽象类,目的就是不想让调用者创建该类对象,通常用于某些特殊的类结构设计。
抽象类的子类,必须重写抽象父类中所有的抽象方法,否则,编译无法通过而报错。除非该子类也是抽象类。
理解:假设不重写所有抽象方法,则类中可能包含抽象方法。那么创建对象后,调用抽象的方法,没有意义。
外部类 | 成员变量 | 代码块 | 构造器 | 方法 | 局部变量 | 内部类(后面讲) | |
---|---|---|---|---|---|---|---|
public | √ | √ | × | √ | √ | × | √ |
protected | × | √ | × | √ | √ | × | √ |
缺省 | √ | √ | × | √ | √ | × | √ |
private | × | √ | × | √ | √ | × | √ |
static | × | √ | √ | × | √ | × | √ |
final | √ | √ | × | × | √ | √ | √ |
abstract | √ | × | × | × | √ | × | √ |
native | × | × | × | × | √ | × | × |
不能和abstract一起使用的修饰符?
(1)abstract和final不能一起修饰方法和类
(2)abstract和static不能一起修饰方法
(3)abstract和native不能一起修饰方法
(4)abstract和private不能一起修饰方法
static和final一起使用:
(1)修饰方法:可以,因为都不能被重写
(2)修饰成员变量:可以,表示静态常量
(3)修饰局部变量:不可以,static不能修饰局部变量
(4)修饰代码块:不可以,final不能修改代码块
(5)修饰内部类:可以一起修饰成员内部类,不能一起修饰局部内部类
生活中大家每天都在用USB接口,那么USB接口与我们今天要学习的接口有什么相同点呢?
USB是通用串行总线的英文缩写,是Intel公司开发的总线架构,使得在计算机上添加串行设备(鼠标、键盘、打印机、扫描仪、摄像头、充电器、MP3机、手机、数码相机、移动硬盘等)非常容易。只须将设备插入计算机的USB端口中,系统会自动识别和配置。 有了USB,我们电脑需要提供的各种插槽的口越来越少,而能支持的其他设备的连接却越来越多。
那么我们平时看到的电脑上的USB插口、以及其他设备上的USB插口是什么呢?
其实,不管是电脑上的USB插口,还是其他设备上的USB插口都只是遵循了USB规范的一种具体设备而已。
根据时代发展,USB接口标准经历了一代USB、第二代USB 2.0和第三代USB 3.0 。
USB规格第一次是于1995年,由Intel、IBM、Compaq、Microsoft、NEC、Digital、North Telecom等七家公司组成的USBIF(USB Implement Forum)共同提出,USBIF于1996年1月正式提出USB1.0规格,频宽为1.5Mbps。
USB2.0技术规范是有由Compaq、Hewlett Packard、Intel、Lucent、Microsoft、NEC、Philips共同制定、发布的,规范把外设数据传输速度提高到了480Mbps,被称为USB 2.0的高速(High-speed)版本.
USB 3.0是最新的USB规范,该规范由英特尔等公司发起,USB3.0的最大传输带宽高达5.0Gbps(640MB/s),USB3.0 引入全双工数据传输。5根线路中2根用来发送数据,另2根用来接收数据,还有1根是地线。也就是说,USB 3.0可以同步全速地进行读写操作。
USB版本 | 最大传输速率 | 速率称号 | 最大输出电流 | 推出时间 |
---|---|---|---|---|
USB1.0 | 1.5Mbps(192KB/s) | 低速(Low-Speed) | 5V/500mA | 1996年1月 |
USB1.1 | 12Mbps(1.5MB/s) | 全速(Full-Speed) | 5V/500mA | 1998年9月 |
USB2.0 | 480Mbps(60MB/s) | 高速(High-Speed) | 5V/500mA | 2000年4月 |
USB3.0 | 5Gbps(500MB/s) | 超高速(Super-Speed) | 5V/900mA | 2008年11月 |
USB 3.1 | 10Gbps(1280MB/s) | 超高速+(Super-speed+) | 20V/5A | 2013年12月 |
下面是USB2.0和USB3.0标准下的各类接口示意图:
电脑边上提供了USB插槽,这个插槽遵循了USB的规范,只要其他设备也是遵循USB规范的,那么就可以互联,并正常通信。至于这个电脑、以及其他设备是哪个厂家制造的,内部是如何实现的,我们都无需关心。
这种设计是将规范和实现分离,这也正是Java接口的好处。Java的软件系统会有很多模块组成,那么各个模块之间也应该采用这种面相接口的低耦合,为系统提供更好的可扩展性和可维护性。
package com.atguigu.interfacetype;
public class Computer {
// private Mouse mouse;//只能连接鼠标
// private KeyBoard keyboard;//只能连接键盘
private Usb3 usb;
//Usb3如果是类的话,有单继承限制
//Usb3如果是接口的话,就不会有单继承限制
public Usb3 getUsb() {
return usb;
}
public void setUsb(Usb3 usb) {
this.usb = usb;
}
}
接口的定义,它与定义类方式相似,但是使用 interface
关键字。它也会被编译成.class文件,但一定要明确它并不是类,而是另外一种引用数据类型。
引用数据类型:数组,类,枚举,接口,注解。
【修饰符】 interface 接口名{
//接口的成员列表:
// 公共的静态常量
// 公共的抽象方法
// 公共的默认方法(JDK1.8以上)
// 公共的静态方法(JDK1.8以上)
// 私有方法(JDK1.9以上)
}
示例代码:
package com.atguigu.interfacetype;
public interface Usb3{
//静态常量
long MAX_SPEED = 500*1024*1024;//500MB/s
//抽象方法
void in();
void out();
//默认方法
default void start(){
System.out.println("开始");
}
default void stop(){
System.out.println("结束");
}
//静态方法
static void show(){
System.out.println("USB 3.0可以同步全速地进行读写操作");
}
}
接口定义的是多个类共同的公共行为规范,这些行为规范是与外部交流的通道,这就意味着接口里通常是定义一组公共方法。
在JDK8之前,接口中只允许出现:
(1)公共的静态的常量:其中public static final可以省略
(2)公共的抽象的方法:其中public abstract可以省略
理解:接口是从多个相似类中抽象出来的规范,不需要提供具体实现
在JDK1.8时,接口中允许声明默认方法和静态方法:
(3)公共的默认的方法:其中public 可以省略,建议保留,但是default不能省略
(4)公共的静态的方法:其中public 可以省略,建议保留,但是static不能省略
在JDK1.9时,接口又增加了:
(5)私有方法
除此之外,接口中不能有其他成员,没有构造器,没有初始化块,因为接口中没有成员变量需要动态初始化。
1、为什么接口中只能声明公共的静态的常量?
因为接口是标准规范,那么在规范中需要声明一些底线边界值,当实现者在实现这些规范时,不能去随意修改和触碰这些底线,否则就有“危险”。
例如:USB1.0规范中规定最大传输速率是1.5Mbps,最大输出电流是5V/500mA
USB3.0规范中规定最大传输速率是5Gbps(500MB/s),最大输出电流是5V/900mA
例如:尚硅谷学生行为规范中规定学员,早上8:25之前进班,晚上21:30之后离开等等。
2、为什么JDK1.8之后要允许接口定义静态方法和默认方法呢?因为它违反了接口作为一个抽象标准定义的概念。
静态方法:因为之前的标准类库设计中,有很多Collection/Colletions或者Path/Paths这样成对的接口和类,后面的类中都是静态方法,而这些静态方法都是为前面的接口服务的,那么这样设计一对API,不如把静态方法直接定义到接口中使用和维护更方便。
默认方法:(1)我们要在已有的老版接口中提供新方法时,如果添加抽象方法,就会涉及到原来使用这些接口的类就会有问题,那么为了保持与旧版本代码的兼容性,只能允许在接口中定义默认方法实现。比如:Java8中对Collection、List、Comparator等接口提供了丰富的默认方法。(2)当我们接口的某个抽象方法,在很多实现类中的实现代码是一样的,此时将这个抽象方法设计为默认方法更为合适,那么实现类就可以选择重写,也可以选择不重写。
3、为什么JDK1.9要允许接口定义私有方法呢?因为我们说接口是规范,规范时需要公开让大家遵守的
私有方法:因为有了默认方法和静态方法这样具有具体实现的方法,那么就可能出现多个方法由共同的代码可以抽取,而这些共同的代码抽取出来的方法又只希望在接口内部使用,所以就增加了私有方法。
接口不能直接创建对象,但是可以通过接口名直接调用接口的静态方法和静态常量。
package com.atguigu.interfacetype;
public class TestUsb3 {
public static void main(String[] args) {
//通过“接口名.”调用接口的静态方法
Usb3.show();
//通过“接口名.”直接使用接口的静态常量
System.out.println(Usb3.MAX_SPEED);
}
}
接口不能创建对象,但是可以被类实现(implements
,类似于被继承)。
类与接口的关系为实现关系,即类实现接口,该类可以称为接口的实现类,也可以称为接口的子类。实现的动作类似继承,格式相仿,只是关键字不同,实现使用 implements
关键字。
【修饰符】 class 实现类 implements 接口{
// 重写接口中抽象方法【必须】,当然如果实现类是抽象类,那么可以不重写
// 重写接口中默认方法【可选】
}
【修饰符】 class 实现类 extends 父类 implements 接口{
// 重写接口中抽象方法【必须】,当然如果实现类是抽象类,那么可以不重写
// 重写接口中默认方法【可选】
}
注意:
如果接口的实现类是非抽象类,那么必须重写接口中所有抽象方法。
默认方法可以选择保留,也可以重写。
重写时,default单词就不要再写了,它只用于在接口中表示默认方法,到类中就没有默认方法的概念了
接口中的静态方法不能被继承也不能被重写
示例代码:
package com.atguigu.interfacetype;
public class MobileHDD implements Usb3 {
//重写/实现接口的抽象方法,【必选】
public void out() {
System.out.println("读取数据并发送");
}
public void in(){
System.out.println("接收数据并写入");
}
//重写接口的默认方法,【可选】
//重写默认方法时,default单词去掉
public void end(){
System.out.println("清理硬盘中的隐藏回收站中的东西,再结束");
}
}
package com.atguigu.interfacetype;
public class TestMobileHDD {
public static void main(String[] args) {
//创建实现类对象
MobileHDD b = new MobileHDD();
//通过实现类对象调用重写的抽象方法,以及接口的默认方法,如果实现类重写了就执行重写的默认方法,如果没有重写,就执行接口中的默认方法
b.start();
b.in();
b.stop();
//通过接口名调用接口的静态方法
// MobileHDD.show();
// b.show();
Usb3.show();
}
}
之前学过,在继承体系中,一个类只能继承一个父类。而对于接口而言,一个类是可以实现多个接口的,这叫做接口的多实现。并且,一个类能继承一个父类,同时实现多个接口。
实现格式:
【修饰符】 class 实现类 implements 接口1,接口2,接口3。。。{
// 重写接口中所有抽象方法【必须】,当然如果实现类是抽象类,那么可以不重写
// 重写接口中默认方法【可选】
}
【修饰符】 class 实现类 extends 父类 implements 接口1,接口2,接口3。。。{
// 重写接口中所有抽象方法【必须】,当然如果实现类是抽象类,那么可以不重写
// 重写接口中默认方法【可选】
}
接口中,有多个抽象方法时,实现类必须重写所有抽象方法。如果抽象方法有重名的,只需要重写一次。
定义多个接口:
package com.atguigu.interfacetype;
public interface A {
void showA();
void show();
}
package com.atguigu.interfacetype;
public interface B extends A {
void showB();
void show();
}
定义实现类:
package com.atguigu.interfacetype;
public class C implements A,B {
@Override
public void showA() {
System.out.println("showA");
}
@Override
public void showB() {
System.out.println("showB");
}
@Override
public void show() {
System.out.println("show");
}
}
测试类
package com.atguigu.interfacetype;
public class TestC {
public static void main(String[] args) {
C c = new C();
c.showA();
c.showB();
c.show();
}
}
一个接口能继承另一个或者多个接口,接口的继承也使用 extends
关键字,子接口继承父接口的方法。
定义父接口:
package com.atguigu.interfacetype;
public interface Chargeable {
void charge();
void in();
void out();
}
定义子接口:
package com.atguigu.interfacetype;
public interface UsbC extends Chargeable,Usb3 {
void reverse();
}
定义子接口的实现类:
package com.atguigu.interfacetype;
public class TypeCConverter implements UsbC {
@Override
public void reverse() {
System.out.println("正反面都支持");
}
@Override
public void charge() {
System.out.println("可充电");
}
@Override
public void in() {
System.out.println("接收数据");
}
@Override
public void out() {
System.out.println("输出数据");
}
}
所有父接口的抽象方法都有重写。
方法签名相同的抽象方法只需要实现一次。
实现类实现接口,类似于子类继承父类,因此,接口类型的变量与实现类的对象之间,也可以构成多态引用。通过接口类型的变量调用方法,最终执行的是你new的实现类对象实现的方法体。
接口的不同实现类:
package com.atguigu.interfacetype;
public class Mouse implements Usb3 {
@Override
public void out() {
System.out.println("发送脉冲信号");
}
@Override
public void in() {
System.out.println("不接收信号");
}
}
package com.atguigu.interfacetype;
public class KeyBoard implements Usb3{
@Override
public void in() {
System.out.println("不接收信号");
}
@Override
public void out() {
System.out.println("发送按键信号");
}
}
测试类
package com.atguigu.interfacetype;
public class TestComputer {
public static void main(String[] args) {
Computer computer = new Computer();
Usb3 usb = new Mouse();
computer.setUsb(usb);
usb.start();
usb.out();
usb.in();
usb.stop();
System.out.println("--------------------------");
usb = new KeyBoard();
computer.setUsb(usb);
usb.start();
usb.out();
usb.in();
usb.stop();
System.out.println("--------------------------");
usb = new MobileHDD();
computer.setUsb(usb);
usb.start();
usb.out();
usb.in();
usb.stop();
}
}
当一个类,既继承一个父类,又实现若干个接口时,父类中的成员方法与接口中的抽象方法重名,子类就近选择执行父类的成员方法。代码如下:
定义接口:
package com.atguigu.interfacetype;
public interface Friend {
default void date(){//约会
System.out.println("吃喝玩乐");
}
}
定义父类:
package com.atguigu.interfacetype;
public class Father {
public void date(){//约会
System.out.println("爸爸约吃饭");
}
}
定义子类:
package com.atguigu.interfacetype;
public class Son extends Father implements Friend {
@Override
public void date() {
//(1)不重写默认保留父类的
//(2)调用父类被重写的
// super.date();
//(3)保留父接口的
// Friend.super.date();
//(4)完全重写
System.out.println("学Java");
}
}
定义测试类:
package com.atguigu.interfacetype;
public class TestSon {
public static void main(String[] args) {
Son s = new Son();
s.date();
}
}
无论你多难抉择,最终都是要做出选择的。
声明接口:
package com.atguigu.interfacetype;
public interface BoyFriend {
default void date(){//约会
System.out.println("神秘约会");
}
}
选择保留其中一个,通过“接口名.super.方法名"的方法选择保留哪个接口的默认方法。
package com.atguigu.interfacetype;
public class Girl implements Friend,BoyFriend{
@Override
public void date() {
//(1)保留其中一个父接口的
// Friend.super.date();
// BoyFriend.super.date();
//(2)完全重写
System.out.println("学Java");
}
}
测试类
package com.atguigu.interfacetype;
public class TestGirl {
public static void main(String[] args) {
Girl girl = new Girl();
girl.date();
}
}
另一个父接口:
package com.atguigu.interfacetype;
public interface Usb2 {
//静态常量
long MAX_SPEED = 60*1024*1024;//60MB/s
//抽象方法
void in();
void out();
//默认方法
public default void start(){
System.out.println("开始");
}
public default void stop(){
System.out.println("结束");
}
//静态方法
public static void show(){
System.out.println("USB 2.0可以高速地进行读写操作");
}
}
子接口:
package com.atguigu.interfacetype;
public interface Usb extends Usb2,Usb3 {
@Override
default void start() {
System.out.println("Usb.start");
}
@Override
default void stop() {
System.out.println("Usb.stop");
}
}
小贴士:
子接口重写默认方法时,default关键字可以保留。
子类重写默认方法时,default关键字不可以保留。
此时在子类中想要引用父类或父接口的同名的常量或成员变量时,就会有冲突问题。
父类和父接口:
package com.atguigu.interfacetype;
public class SuperClass {
int x = 1;
}
package com.atguigu.interfacetype;
public interface SuperInterface {
int x = 2;
int y = 2;
}
package com.atguigu.interfacetype;
public interface MotherInterface {
int x = 3;
}
子类:
package com.atguigu.interfacetype;
public class SubClass extends SuperClass implements SuperInterface,MotherInterface {
public void method(){
// System.out.println("x = " + x);//模糊不清
System.out.println("super.x = " + super.x);
System.out.println("SuperInterface.x = " + SuperInterface.x);
System.out.println("MotherInterface.x = " + MotherInterface.x);
System.out.println("y = " + y);//没有重名问题,可以直接访问
}
}
我们知道基本数据类型的数据(除boolean类型外)需要比较大小的话,之间使用比较运算符即可,但是引用数据类型是不能直接使用比较运算符来比较大小的。那么,如何解决这个问题呢?
Java给所有引用数据类型的大小比较,指定了一个标准接口,就是java.lang.Comparable接口:
package java.lang;
public interface Comparable{
int compareTo(Object obj);
}
那么我们想要使得我们某个类的对象可以比较大小,怎么做呢?步骤:
第一步:哪个类的对象要比较大小,哪个类就实现java.lang.Comparable接口,并重写方法
第二步:对象比较大小时,通过对象调用compareTo方法,根据方法的返回值决定谁大谁小。
代码示例:
package com.atguigu.api;
public class Student implements Comparable {
private int id;
private String name;
private int score;
private int age;
public Student(int id, String name, int score, int age) {
this.id = id;
this.name = name;
this.score = score;
this.age = age;
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getScore() {
return score;
}
public void setScore(int score) {
this.score = score;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
@Override
public String toString() {
return "Student{" +
"id=" + id +
", name='" + name + '\'' +
", score=" + score +
", age=" + age +
'}';
}
@Override
public int compareTo(Object o) {
//这些需要强制,将o对象向下转型为Student类型的变量,才能调用Student类中的属性
//默认按照学号比较大小
Student stu = (Student) o;
return this.id - stu.id;
}
}
测试类
package com.atguigu.api;
public class TestStudent {
public static void main(String[] args) {
Student[] arr = new Student[5];
arr[0] = new Student(3,"张三",90,23);
arr[1] = new Student(1,"熊大",100,22);
arr[2] = new Student(5,"王五",75,25);
arr[3] = new Student(4,"李四",85,24);
arr[4] = new Student(2,"熊二",85,18);
//单独比较两个对象
System.out.println(arr[0].compareTo(arr[1]));
System.out.println(arr[1].compareTo(arr[2]));
System.out.println(arr[2].compareTo(arr[2]));
System.out.println("所有学生:");
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
System.out.println("按照学号排序:");
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < arr.length-i; j++) {
if(arr[j].compareTo(arr[j+1])>0){
Student temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}
思考:
(1)如果一个类,没有实现Comparable接口,而这个类你又不方便修改(例如:一些第三方的类,你只有.class文件,没有源文件),那么这样类的对象也要比较大小怎么办?
(2)如果一个类,实现了Comparable接口,也指定了两个对象的比较大小的规则,但是此时此刻我不想按照它预定义的方法比较大小,但是我又不能随意修改,因为会影响其他地方的使用,怎么办?
JDK在设计类库之初,也考虑到这种情况了,所以又增加了一个java.util.Comparator接口。
package java.util;
public interface Comparator{
int compare(Object o1,Object o2);
}
那么我们想要比较某个类的两个对象的大小,怎么做呢?步骤:
第一步:编写一个类,我们称之为比较器类型,实现java.util.Comparator接口,并重写方法
第二步:比较大小时,通过比较器类型的对象调用compare()方法,将要比较大小的两个对象作为compare方法的实参传入,根据方法的返回值决定谁大谁小。
代码示例:定义定制比较器类
package com.atguigu.api;
import java.util.Comparator;
public class StudentScoreComparator implements Comparator {
@Override
public int compare(Object o1, Object o2) {
Student s1 = (Student) o1;
Student s2 = (Student) o2;
int result = s1.getScore() - s2.getScore();
return result != 0 ? result : s1.getId() - s2.getId();
}
}
代码示例:测试类
package com.atguigu.api;
public class TestStudent {
public static void main(String[] args) {
Student[] arr = new Student[5];
arr[0] = new Student(3,"张三",90,23);
arr[1] = new Student(1,"熊大",100,22);
arr[2] = new Student(5,"王五",75,25);
arr[3] = new Student(4,"李四",85,24);
arr[4] = new Student(2,"熊二",85,18);
//单独比较两个对象
System.out.println(arr[0].compareTo(arr[1]));
System.out.println(arr[1].compareTo(arr[2]));
System.out.println(arr[2].compareTo(arr[2]));
System.out.println("所有学生:");
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
System.out.println("按照学号排序:");
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < arr.length-i; j++) {
if(arr[j].compareTo(arr[j+1])>0){
Student temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
System.out.println("按照成绩排序");
StudentScoreComparator sc = new StudentScoreComparator();
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < arr.length-i; j++) {
if(sc.compare(arr[j],arr[j+1])>0){
Student temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
for (int i = 0; i < arr.length; i++) {
System.out.println(arr[i]);
}
}
}
在java.lang.Object类中有一个方法:
protected Object clone()throws CloneNotSupportedException
所有类型都可以重写这个方法,它是获取一个对象的克隆体对象用的,就是造一个和当前对象各种属性值一模一样的对象。当然地址肯定不同。
我们在重写这个方法后时,调用super.clone(),发现报异常CloneNotSupportedException,因为我们没有实现java.lang.Cloneable接口。
class Teacher implements Cloneable{
private int id;
private String name;
public Teacher(int id, String name) {
super();
this.id = id;
this.name = name;
}
public Teacher() {
super();
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
public String toString() {
return "Teacher [id=" + id + ", name=" + name + "]";
}
@Override
public Object clone() throws CloneNotSupportedException {
return super.clone();
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + id;
result = prime * result + ((name == null) ? 0 : name.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Teacher other = (Teacher) obj;
if (id != other.id)
return false;
if (name == null) {
if (other.name != null)
return false;
} else if (!name.equals(other.name))
return false;
return true;
}
}
public class TestClonable {
public static void main(String[] args) throws CloneNotSupportedException {
Teacher src = new Teacher(1,"柴老师");
Object clone = src.clone();
System.out.println(clone);
System.out.println(src == clone);
System.out.println(src.equals(clone));
}
}
从JDK1.5之后引入java.lang.Iterable接口。实现这个接口允许对象成为 “foreach” 语句的目标。java.lang.Iterable接口包含一个抽象方法:Iterator iterator(),实现Iterable接口就要实现这个抽象方法,而 Java中的数组默认都是实现了这个接口的,不用程序员手动实现这个抽象方法。
foreach循环的语法格式:
for(元素类型 元素名 : 数组名){
}
//这里元素名就是一个临时变量,自己命名就可以
代码示例:
package com.atguigu.api;
public class TestForeach {
public static void main(String[] args) {
int[] nums = {1,2,3,4,5};
for (int num : nums) {
System.out.println(num);
}
System.out.println("-----------------");
String[] names = {"张三","李四","王五"};
for (String name : names) {
System.out.println(name);
}
}
}
1、什么是内部类?
将一个类A定义在另一个类B里面,里面的那个类A就称为内部类,B则称为外部类。
2、为什么要声明内部类呢?
总的来说,遵循高内聚低耦合的面向对象开发总原则。便于代码维护和扩展。
具体来说,当一个事物的内部,还有一个部分需要一个完整的结构进行描述,而这个内部的完整的结构又只为外部事物提供服务,不在其他地方单独使用,那么整个内部的完整结构最好使用内部类。而且内部类因为在外部类的里面,因此可以直接访问外部类的私有成员。
3、内部类都有哪些形式?
根据内部类声明的位置(如同变量的分类),我们可以分为:
(1)成员内部类:
(2)局部内部类
如果成员内部类中不使用外部类的非静态成员,那么通常将内部类声明为静态内部类,否则声明为非静态内部类。
语法格式:
【修饰符】 class 外部类{
【其他修饰符】 【static】 class 内部类{
}
}
有static修饰的成员内部类叫做静态内部类。它的特点:
其实严格的讲(在James Gosling等人编著的《The Java Language Specification》)静态内部类不是内部类,而是类似于C++的嵌套类的概念,外部类仅仅是静态内部类的一种命名空间的限定名形式而已。所以接口中的内部类通常都不叫内部类,因为接口中的内部成员都是隐式是静态的(即public static)。例如:Map.Entry。
没有static修饰的成员内部类叫做非静态内部类。非静态内部类的特点:
和其他类一样,它只是定义在外部类中的另一个完整的类结构
和外部类不同的是,它可以允许四种权限修饰符:public,protected,缺省,private
还可以在非静态内部类中使用外部类的所有成员,哪怕是私有的
在外部类的静态成员中不可以使用非静态内部类哦
在外部类的外面必须通过外部类的对象才能创建非静态内部类的对象(通常应该避免这样使用)
package com.atguigu.inner.member;
public class TestMemberInnerClass {
public static void main(String[] args) {
Outer.outMethod();
System.out.println("-----------------------");
Outer out = new Outer();
out.outFun();
System.out.println("####################################");
Outer.Inner.inMethod();
System.out.println("------------------------");
Outer.Inner inner = new Outer.Inner();
inner.inFun();
System.out.println("####################################");
Outer outer = new Outer();
// Outer.Nei nei = outer.new Nei();
Outer.Nei nei = out.getNei();
nei.inFun();
}
}
class Outer{
private static String a = "外部类的静态a";
private static String b = "外部类的静态b";
private String c = "外部类对象的非静态c";
private String d = "外部类对象的非静态d";
static class Inner{
private static String a ="静态内部类的静态a";
private String c = "静态内部类对象的非静态c";
public static void inMethod(){
System.out.println("Inner.inMethod");
System.out.println("Outer.a = " + Outer.a);
System.out.println("Inner.a = " + a);
System.out.println("b = " + b);
// System.out.println("c = " + c);//不能访问外部类和自己的非静态成员
// System.out.println("d = " + d);//不能访问外部类的非静态成员
}
public void inFun(){
System.out.println("Inner.inFun");
System.out.println("Outer.a = " + Outer.a);
System.out.println("Inner.a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);
// System.out.println("d = " + d);//不能访问外部类的非静态成员
}
}
class Nei{
private String a = "非静态内部类对象的非静态a";
private String c = "非静态内部类对象的非静态c";
public void inFun(){
System.out.println("Nei.inFun");
System.out.println("Outer.a = " + Outer.a);
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("Outer.c = " + Outer.this.c);
System.out.println("c = " + c);
System.out.println("d = " + d);
}
}
public static void outMethod(){
System.out.println("Outer.outMethod");
System.out.println("a = " + a);
System.out.println("Inner.a = " + Inner.a);
System.out.println("b = " + b);
// System.out.println("c = " + c);
// System.out.println("d = " + d);
Inner in = new Inner();
System.out.println("in.c = " + in.c);
}
public void outFun(){
System.out.println("Outer.outFun");
System.out.println("a = " + a);
System.out.println("Inner.a = " + Inner.a);
System.out.println("b = " + b);
System.out.println("c = " + c);
System.out.println("d = " + d);
Inner in = new Inner();
System.out.println("in.c = " + in.c);
}
public Nei getNei(){
return new Nei();
}
}
语法格式:
【修饰符】 class 外部类{
【修饰符】 返回值类型 方法名(【形参列表】){
【final/abstract】 class 内部类{
}
}
}
局部内部类的特点:
示例代码:
package com.atguigu.inner.local;
public class TestLocalInner {
public static void main(String[] args) {
Runner runner = Outer.getRunner();
runner.run();
System.out.println("-------------------");
Outer.outMethod();
System.out.println("-------------------");
Outer out = new Outer();
out.outTest();
}
}
class Outer{
private static String a = "外部类的静态a";
private String b = "外部类对象的非静态b";
public static void outMethod(){
System.out.println("Outer.outMethod");
final String c = "局部变量c";
class Inner{
public void inMethod(){
System.out.println("Inner.inMethod");
System.out.println("out.a = " + a);
// System.out.println("out.b = " + b);//错误的,因为outMethod是静态的
System.out.println("out.local.c = " + c);
}
}
Inner in = new Inner();
in.inMethod();
}
public void outTest(){
class Inner{
public void inMethod(){
System.out.println("out.a = " + a);
System.out.println("out.b = " + b);//可以,因为outTest是非静态的
}
}
Inner in = new Inner();
in.inMethod();
}
public static Runner getRunner(){
class LocalRunner implements Runner{
@Override
public void run() {
System.out.println("LocalRunner.run");
}
}
return new LocalRunner();
}
}
interface Runner{
void run();
}
当我们在开发过程中,需要用到一个抽象类的子类的对象或一个接口的实现类的对象,而且只创建一个对象,而且逻辑代码也不复杂。那么我们原先怎么做的呢?
(1)编写类,继承这个父类或实现这个接口
(2)重写父类或父接口的方法
(3)创建这个子类或实现类的对象
这里,因为考虑到这个子类或实现类是一次性的,那么我们“费尽心机”的给它取名字,就显得多余。那么我们完全可以使用匿名内部类的方式来实现,避免给类命名的问题。
new 父类(【实参列表】){
重写方法...
}
//()中是否需要【实参列表】,看你想要让这个匿名内部类调用父类的哪个构造器,如果调用父类的无参构造,那么()中就不用写参数,如果调用父类的有参构造,那么()中需要传入实参
new 父接口(){
重写方法...
}
//()中没有参数,因为此时匿名内部类的父类是Object类,它只有一个无参构造
匿名内部类是没有名字的类,因此在声明类的同时就创建好了唯一的对象。
注意:
匿名内部类是一种特殊的局部内部类,只不过没有名称而已。所有局部内部类的限制都适用于匿名内部类。例如:
思考:这个对象能做什么呢?
(1)使用匿名内部类的对象直接调用方法
interface A{
void a();
}
public class Test{
public static void main(String[] args){
new A(){
@Override
public void a() {
System.out.println("aaaa");
}
}.a();
}
}
(2)通过父类或父接口的变量多态引用匿名内部类的对象
interface A{
void a();
}
public class Test{
public static void main(String[] args){
A obj = new A(){
@Override
public void a() {
System.out.println("aaaa");
}
};
obj.a();
}
}
(3)匿名内部类的对象作为实参
interface A{
void method();
}
public class Test{
public static void test(A a){
a.method();
}
public static void main(String[] args){
test(new A(){
@Override
public void method() {
System.out.println("aaaa");
}
});
}
}
注解是以“@注释名”在代码中存在的,还可以添加一些参数值,例如:
@SuppressWarnings(value=”unchecked”)
@Override
@Deprecated
注解Annotation是从JDK5.0开始引入。
虽然说注解也是一种注释,因为它们都不会改变程序原有的逻辑,只是对程序增加了某些注释性信息。不过它又不同于单行注释和多行注释,对于单行注释和多行注释是给程序员看的,而注解是可以被编译器或其他程序读取的一种注释,程序还可以根据注解的不同,做出相应的处理。所以注解是插入到代码中以便有工具可以对它们进行处理的标签。
用于检测被修饰的方法为有效的重写方法,如果不是,则报编译错误!
只能标记在方法上。
它会被编译器程序读取。
用于表示被标记的数据已经过时,不建议使用。
可以用于修饰 属性、方法、构造、类、包、局部变量、参数。
它会被编译器程序读取。
抑制编译警告。
可以用于修饰类、属性、方法、构造、局部变量、参数
它会被编译器程序读取。
示例代码:
package com.atguigu.annotation;
import java.util.ArrayList;
public class TestAnnotation {
@SuppressWarnings("all")
public static void main(String[] args) {
int i;
ArrayList list = new ArrayList();
list.add("hello");
list.add(123);
list.add("world");
Father f = new Son();
f.show();
f.methodOl();
}
}
class Father{
@Deprecated
void show() {
System.out.println("Father.show");
}
void methodOl() {
System.out.println("Father Method");
}
}
class Son extends Father{
/* @Override
void method01() {
System.out.println("Son Method");
}*/
}
JUnit是由 Erich Gamma 和 Kent Beck 编写的一个回归测试框架(regression testing framework),供Java开发人员编写单元测试之用。多数Java的开发环境都已经集成了JUnit作为单元测试的工具。JUnit测试是程序员测试,即所谓白盒测试,因为程序员知道被测试的软件如何(How)完成功能和完成什么样(What)的功能。
要使用JUnit,必须在项目的编译路径中必须引入JUnit的库,即相关的.class文件组成的jar包。如何把JUnit的jar添加到编译路径如图所示:
后面会学习maven,在maven仓库中统一管理所有第三方框架和工具组件的jar,但是现在没有学习maven之前,可以使用本地jar包。
第一步:在当前IDEA项目目录下建立junitlibs,把下载的JUnit的相关jar包放进去:
第二步:在项目中添加Libraries库
第三步:选择要在哪些module中应用JUnit库
第四步:检查是否应用成功
注意Scope:选择Complie,否则编译时,无法使用JUnit。
第5步:下次如果有新的模块要使用该libs库,这样操作即可
JUnit4版本,要求@Test标记的方法必须满足如下要求:
package com.atguigu.junit;
import org.junit.Test;
public class TestJUnit {
@Test
public void test01(){
System.out.println("TestJUnit.test01");
}
@Test
public void test02(){
System.out.println("TestJUnit.test02");
}
@Test
public void test03(){
System.out.println("TestJUnit.test03");
}
}
在idea64.exe.vmoptions配置文件中加入下面一行设置,重启idea后生效。
需要注意的是,要看你当前IDEA读取的是哪个idea64.exe.vmoptions配置文件文件。如果在C盘的用户目录的config下(例如:C:\Users\Irene\.IntelliJIdea2019.2\config)也有一个idea64.exe.vmoptions文件,那么将优先使用C盘用户目录下的。否则用的是IDEA安装目录的bin目录(例如:D:\ProgramFiles\JetBrains\IntelliJ_IDEA_2019.2.3\bin)下的idea64.exe.vmoptions文件。
-Deditable.java.test.console=true