- 深度学习在医学影像分析中的应用:DeepSeek系统的实践与探索
Evaporator Core
#深度学习#DeepSeek快速入门DeepSeek进阶开发与应用深度学习人工智能
随着人工智能技术的迅猛发展,深度学习在医学领域的应用逐渐成为研究热点。医学影像分析作为医疗诊断的重要组成部分,正受益于深度学习技术的突破。DeepSeek系统是一种基于深度学习的医学影像分析平台,旨在通过高效、精准的算法辅助医生进行疾病诊断和治疗决策。本文将深入探讨DeepSeek系统的技术原理、实现方法及其在医学影像分析中的实际应用,并结合代码示例展示其核心功能。1.DeepSeek系统的技术架
- 老人痉挛性斜颈:健康饮食助力缓解症状
全力以赴66
生活
痉挛性斜颈是一种神经系统疾病,表现为颈部肌肉不自主收缩,导致头部歪斜或转动困难。老年人由于身体机能下降,更容易受到这种疾病的困扰。虽然痉挛性斜颈的治疗需要结合医学手段,但通过健康饮食,可以辅助缓解症状,改善生活质量。1.增加镁的摄入:放松肌肉镁是一种天然的肌肉松弛剂,能够帮助缓解肌肉紧张和痉挛。痉挛性斜颈患者通常伴有颈部肌肉过度收缩,补充镁有助于放松肌肉。推荐食物:绿叶蔬菜(如菠菜、羽衣甘蓝)。坚
- 数据挖掘:第二章、认识数据
initial- - -
数据挖掘数据挖掘人工智能
第二章认识数据2.1数据类型与统计汇总数据集与数据对象一个数据集由多个数据对象组成,每个数据对象代表一个实体。例如,在销售数据库中,数据对象可以是客户、商品、销售额等;在医疗数据库中,数据对象可以是患者、治疗信息等;在大学数据库中,数据对象可以是学生、教授、课程信息等。数据对象也被称为样品、示例、实例、数据点、对象、元组。数据对象所描述的属性即数据集中的列,而数据对象则是数据库中的行。属性属性是数
- 如何让ai问答机器人通人性?
半只小闲鱼
人工智能机器人机器学习
领域专用的问答机器人,数据是灵魂。通用模型的问题在于,它们虽然知识广博,但对特定领域的深度理解不足。解决这个问题的第一步,就是构建一个高质量的领域知识库。数据要精准且全面想让机器人真正“懂”一个领域,数据必须覆盖这个领域的核心知识。比如,医疗领域的问答机器人需要包含疾病诊断、治疗方案、药物信息等;金融领域的机器人则需要熟悉市场动态、法规政策、产品细节等。数据来源可以是行业报告、专业书籍、学术论文,
- TRS收益互换系统开发为何敢称“无限拓展”?模块化架构+弹性集群揭秘!
Ashlee_code
架构pythonjavac++c语言
《【券商震惊】传统询价3小时→TRS黑科技10分钟!盈立证券交易量暴增150%背后秘密》开篇:询价耗时3小时?券商正在被低效“慢性杀死”电话询价、邮件比价、Excel汇总——传统场外交易中,一次询价流程动辄数小时,客户流失率高达40%!TRS收益互换平台,依托DeepSeek动态定价算法与多发行方实时比价引擎,将询价响应时间从3小时压缩至10分钟,助力盈立证券交易量飙升150%,彻底改写行业游戏规
- 24小时响应+零宕机!TRS收益互换系统售后如何成为券商“救命稻草”?
Ashlee_code
架构javapythonc++c语言
《【券商震惊】传统询价3小时→TRS黑科技10分钟!盈立证券交易量暴增150%背后秘密》开篇:询价耗时3小时?券商正在被低效“慢性杀死”电话询价、邮件比价、Excel汇总——传统场外交易中,一次询价流程动辄数小时,客户流失率高达40%!令克软件TRS收益互换平台,依托DeepSeek动态定价算法与多发行方实时比价引擎,将询价响应时间从3小时压缩至10分钟,助力盈立证券交易量飙升150%,彻底改写行
- 基于大模型的单纯性孔源性视网膜脱离预测及治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与目的1.2国内外研究现状1.3研究方法与创新点二、单纯性孔源性视网膜脱离概述2.1发病机制2.2高危因素2.3临床表现与诊断方法三、大模型在术前预测中的应用3.1模型选择与数据收集3.2术前风险预测指标3.3预测结果分析与验证四、基于预测结果的手术方案制定4.1手术原则与目标4.2不同预测结果下的手术方式选择4.3手术案例分析五、麻醉方案的确定5.1麻醉方式的选择依据5
- 基于多模态大模型的不完整多组学数据特征选择策略
m0_65156252
人工智能
基于多模态大模型的不完整多组学数据特征选择策略是当前生物信息学和精准医学领域的一个前沿问题。在多组学数据中,通常包括不同层次的生物信息(如基因组、转录组、蛋白质组、代谢组等),这些数据通常存在缺失、噪声或不一致的情况。因此,如何有效地在这些不完整的数据中进行特征选择,是实现精确疾病预测和个性化治疗的关键。结合多模态大模型(如自监督学习、图神经网络、Transformer等)可以有效解决这一问题。以
- 基于大模型预测的巨细胞病毒视网膜炎诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的1.3研究方法与创新点二、巨细胞病毒视网膜炎概述2.1疾病定义与特点2.2流行病学分析2.3现有治疗手段综述三、大模型技术原理与应用现状3.1大模型介绍3.2在医疗领域的应用案例3.3选择大模型预测巨细胞病毒视网膜炎的原因四、术前预测与评估4.1数据收集与整理4.2大模型预测模型的构建4.3预测内容与指标4.4案例分析:术前预测实例展示五、术中方案制定
- 医院DEEPSEEK辅助应用
cainiaojunshi
智慧城市
一、背景介绍1.1国家政策支持《卫生健康行业人工智能应用场景参考指引》《“十四五”全民健康信息化规划》《关于进一步完善医疗卫生服务体系的意见》的发布。明确了84个AI在医疗健康领域的应用场景,涵盖了预防、诊断、治疗、康复等全流程。涉及医疗服务管理、基层公卫服务、健康产业发展以及医学教学科研等多个关键领域。国家层面明确将人工智能作为医疗领域新质生产力的核心驱动力,推动AI与临床诊疗、医院管理深度融
- AbMole| 纳米药物递送系统IL@H-PP在乳腺癌和脑转移光热疗法
AbMole
AbMole生物化学生物试剂科研生物实验
近年来,光热疗法(PTT)作为一种非侵入性的癌症治疗手段,因其独特的优势而受到广泛关注。来自四川大学华西药学院药物靶向与药物递送系统重点实验室的范童,胡海丽,徐燕燕等多名研究人员发表了题为《HollowcoppersulfidenanoparticlescarryingISRIBforthesensitizedphotothermaltherapyofbreastcancerandbrainmet
- 【资料分享】IF=500+!基于鼻咽癌诱导化疗后减容放疗与常规减容放疗比较的研究综述
灵犀拾荒者
资料分享数据挖掘
一、摘要在鼻咽癌(NasopharyngealCarcinoma,NPC)的综合治疗中,诱导化疗(InductionChemotherapy,IC)可显著缩小肿瘤体积,随后行放射治疗(Radiotherapy,RT)已成为临床常见策略。传统共识通常建议按诱导化疗前(Pre-IC)的肿瘤范围进行常规放疗;然而,减容放疗(Reduced-volumeRT)基于诱导化疗后(Post-IC)显著缩小的肿瘤
- 医院陪诊小程序开发主要解决哪些需求问题
zhushuai0831
个人开发
医院陪诊小程序开发,主要解决以下几个方面的需求问题:1、时间和空间上的便利。陪诊者可以通过小程序实时查询患者的就诊情况,并且可以了解医院的就诊流程和规定。这样可以减少陪诊者等待的时间,避免不必要的浪费。2、信息查询和分享。医院陪诊小程序可以为陪诊者提供疾病查询、药品查询、症状自诊等服务,可以让陪诊者更好地了解病情和治疗方案,并且可以分享这些信息给患者和家属。3、服务评价和反馈。小程序可以提供服务评
- 陪诊小程序开发:市场需求提升下的刚需
冠品网络科技
小程序小程序开发软件开发陪诊小程序微信小程序
近年来,随着人口老龄化的加剧、独居人口的数量不断提高,对陪诊服务的需求开始增强,陪诊行业逐渐走进了大众的日常生活中。而在互联网的发展下,也为陪诊服务提供了更加便捷、高效的平台---陪诊小程序。目前,我国已经进入到了老龄化社会,老年人口数量庞大,且许多老年人患有慢性疾病,需要频繁就医。陪诊小程序可以为他们提供便捷的陪诊服务,为患者提供挂号、取药、陪伴检查等一站式服务,提升就医体验,解决就医难题。陪诊
- 辛格迪客户案例 | 勤浩医药电子合约系统(eSign)项目
辛格迪
区块链
01勤浩医药,创新赋能勤浩医药(苏州)有限公司(以下简称“勤浩医药”)成立于2015年,位于江苏省苏州市工业园区。作为一家专注于创新药物研发的高新技术企业,勤浩医药致力于通过前沿的科研技术和创新平台,为全球患者提供高效、安全的治疗方案。公司秉持“创新驱动、质量为本、患者至上”的发展理念,在肿瘤、代谢性疾病和免疫疾病等领域不断深耕,已逐步发展成为国内领先的创新药研发企业。02行业挑战,传统之困随着医
- 深度学习模型未来可能会在这些领域取得突破性进展
xinxiyinhe
人工智能深度学习人工智能深度学习模型深度学习
深度学习模型作为人工智能的核心技术之一,未来有望在多个领域取得突破性进展。以下是一些可能的方向:1.通用人工智能(AGI)目标:开发具有通用智能的模型,能够像人类一样处理多种任务。潜在突破:更强的推理和抽象能力,解决复杂问题。结合多模态数据(文本、图像、声音等)实现更全面的理解。自我学习和适应能力,减少对大量标注数据的依赖。2.医疗与生命科学目标:提升疾病诊断、药物研发和个性化治疗的水平。潜在突破
- 精益六西格玛助力创新药研发
张驰课堂
六西格玛黑带培训六西格玛培训六西格玛绿带培训六西格玛咨询精益六西格玛培训六西格玛咨询公司
全球创新药平均研发成本已突破26亿美元(2025年Deloitte数据),但临床III期成功率仍不足12%。中国药企面临的不仅是技术追赶,更是与时间、质量、成本的综合博弈。张驰咨询为某细胞治疗企业导入精益六西格玛培训体系,9个月内将CAR-T工艺变更验证周期从14周压缩至5周,关键原辅料放行缺陷率从11.2%降至1.7%,直接规避潜在延迟风险达2.3亿元——这组数据揭示了精益方法论在创新药领域的颠
- 围术期肿瘤风险因子及多维度应对策略研究报告
LCG元
围术期危险因子预测模型研究信息系统vue.js信息系统人工智能
一、引言1.1研究背景与意义在肿瘤治疗领域,手术作为关键手段,其围术期管理对患者的治疗效果、康复进程及长期预后影响深远。围术期涉及术前、术中、术后等多个阶段,各阶段均存在诸多风险因子,这些因子不仅影响手术的顺利实施,还与并发症的发生、患者的生存质量及远期预后紧密相关。深入研究围术期肿瘤风险因子,精准识别并有效干预,对于降低手术风险、减少并发症发生率、提升患者生存率及生活质量具有重要意义。大量临床实
- 基于大模型的脂肪栓塞综合征风险预测与综合治疗方案研究报告
LCG元
围术期危险因子预测模型研究人工智能算法机器学习
目录一、引言1.1研究背景与意义1.2国内外研究现状1.3研究目的与方法二、脂肪栓塞综合征概述2.1定义与发病机制2.2病因与危险因素2.3临床表现与分类2.4诊断标准与方法三、大模型在脂肪栓塞综合征预测中的应用3.1大模型简介3.2数据收集与预处理3.3模型训练与验证3.4预测结果分析四、基于预测结果的手术方案制定4.1术前评估4.2手术方式选择4.3手术注意事项五、基于预测结果的麻醉方案制定5
- 25年第二本书【你的生存本能正在杀死你】
刺客-Andy
杂谈其他
与本能和解:一场现代心灵的进化之旅——读《你的生存本能正在杀死你》一、当原始代码撞上数字文明在非洲草原上,我们的祖先依靠敏锐的生存本能躲过剑齿虎的利齿;而今天,同样的神经警报却在午夜被手机屏幕的蓝光频繁触发。马克·舍恩的《你的生存本能正在杀死你》像一把锋利的手术刀,剖开了现代人最隐秘的生存悖论:那些曾让我们活下来的本能反应,正在以焦虑、失眠和慢性疾病的方式,缓慢地谋杀我们的生命质量。书中揭示的真相
- 大模型在心力衰竭预测及临床方案制定中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的1.3研究方法与创新点二、大模型技术与心力衰竭概述2.1大模型技术原理与发展2.2心力衰竭的病理机制与现状三、大模型在心力衰竭术前风险预测中的应用3.1数据收集与预处理3.2预测模型的构建与训练3.3模型评估与验证3.4基于预测结果的手术方案制定四、大模型在心力衰竭术中风险预测中的应用4.1术中数据监测与获取4.2风险预测模型的实时更新与应用4.3针对
- 大模型在脑梗死预测及治疗方案制定中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与方法1.3国内外研究现状二、脑梗死概述2.1脑梗死的定义与分类2.2脑梗死的发病机制与病理生理过程2.3脑梗死的临床表现与诊断方法三、大模型技术原理与应用现状3.1大模型的基本概念与技术架构3.2大模型在医疗领域的应用案例与优势3.3适用于脑梗死预测的大模型类型与特点四、大模型在脑梗死术前风险预测中的应用4.1术前风险因素分析4.2大模型预测方法与模
- 基于大模型的肺纤维化预测及临床方案研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的与方法二、大模型技术概述2.1大模型的基本原理2.2大模型在医疗领域的应用现状三、肺纤维化相关知识3.1肺纤维化的病因与发病机制3.2肺纤维化的临床症状与诊断方法3.3肺纤维化的治疗现状与挑战四、大模型预测肺纤维化的方法4.1数据收集与预处理4.2模型选择与构建4.3模型训练与优化4.4模型评估与验证五、大模型在肺纤维化术前预测中的应用5.1手术风险评
- 从中医到代码:用Java揭开《皇帝内经》的神秘面纱
guzhoumingyue
javajava
《皇帝内经》是一部古代中国医学经典,主要涵盖了中医的理论和实践,而Java编程则是一种现代的编程语言,两者在本质上属于不同的领域。不过,我们可以从几个方面来探讨它们之间的关联:1.知识体系系统性:无论是《皇帝内经》还是Java编程,都有自己的知识体系。《皇帝内经》讲述的是中医学的基本理论、诊断方法及治疗原则;而Java编程则涉及面向对象编程、数据结构、算法等基础知识。2.学习与实践实践性:学习《皇
- 虚拟现实医疗:技术创新与应用前景
给生活加糖!
热门知识vr
虚拟现实(VirtualReality,VR)医疗是近年来随着虚拟现实技术的快速发展而崛起的一个新兴领域,它结合了计算机图形学、传感技术、互动技术与医学的深度融合,通过模拟真实的三维虚拟环境,让医生、患者、医务人员能够在安全、可控的虚拟世界中进行操作、治疗与学习。虚拟现实医疗技术不仅推动了医学教育的革新,还为治疗、康复、心理治疗、手术模拟等方面开辟了新的道路。本文将全面分析虚拟现实医疗的概念、应用
- 撰写文献必用的评价指标之DCA决策曲线
小辉同志
深度学习深度学习论文阅读
系列文章目录第一章撰写文献必用的评价指标之普通表格第二章撰写文献必用的评价指标之DCA决策曲线目录系列文章目录前言一、DCA决策曲线表现形式横轴纵轴曲线曲线解读图例二、单因素多因素分析单因素分析多因素分析三、R语言程序代码代码解释总结前言在智慧医疗中,深度学习模型用于疾病预测等任务,DCA决策曲线能将模型的预测结果与不同阈值下的临床决策相结合,直观展示在不同疾病概率阈值下,采取某种诊断或治疗策略所
- 桑黄消结节:甲状腺与乳腺结节的天然疗法
桑黄研究员
人工智能健康医疗
——科学解读千年药菌的抗炎与免疫调节密码一、结节危机:现代人的“隐形健康杀手”甲状腺结节与乳腺结节已成为现代人高发疾病。数据显示,我国甲状腺结节检出率超20%,乳腺增生性结节发病率高达70%。西医治疗以手术和药物为主,但存在创伤大、易复发等问题。而中医古籍中记载的桑黄,凭借抗炎、免疫调节与软坚散结三重作用,正成为结节管理的天然选择。二、桑黄消结节的科学机制1.抗炎成分:阻断结节生长的“导火索”慢性
- 深度学习在医疗影像分析中的革命性应用
Echo_Wish
人工智能前沿技术深度学习人工智能
深度学习在医疗影像分析中的革命性应用引言医疗影像分析是现代医学中不可或缺的一部分,特别是在疾病诊断和治疗过程中发挥了至关重要的作用。随着深度学习技术的发展,医疗影像分析的效率和准确性得到了显著提升。本文将探讨如何利用深度学习技术,特别是Python编程语言,来优化医疗影像分析,展示具体的代码实例,并举例说明其实际应用效果。深度学习与医疗影像分析深度学习(DeepLearning)是一种基于人工神经
- World of Warcraft [CLASSIC] Earth, Wind & Fire
spencer_tseng
gameWoWCLASSIC
WorldofWarcraft[CLASSIC]Earth,Wind&Fire地、风和火在60秒内连续击杀岩石看守者阿尔卡冯、风暴看守者埃玛尔隆和火焰看守者科拉隆3个坦克:1号FQ拉土,加风的小怪,特别注意超载小怪,小怪会打治疗的2号DK主拉火,嘲讽土3号FQ拉风(和2号DK重合,流星拳分担,他掉血很快)特别注意超载小怪2个治疗NQ,JLM5个输出2个猎人去拉BOSS,2个法师输出,萨满是必须的,
- AI 诊疗是经验医学还是循证医学?
医学AppMatrix
有用的数据分析人工智能大数据深度学习
随着deepseek的爆火,以及AI诊疗个案的肯定,似乎医生和患者都已经接受了AI在医学诊疗上的应用。人类诊疗模式存在经验医学和循证医学两种,那AI的诊疗是经验医学还是循证医学呢?一、AI诊疗经验医学还是循证医学?AI进行诊疗与经验医学、循证医学都有一定关联。经验医学角度经验医学主要依靠医生个人的临床经验来进行疾病的诊断和治疗决策。AI在一定程度上可以模拟经验医学。通过对大量医疗数据的学习,这些数
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号