【目标检测】对DETR的简单理解

【目标检测】对DETR的简单理解

文章目录

  • 【目标检测】对DETR的简单理解
    • 1. Abs
    • 2. Intro
    • 3. Method
      • 3.1 模型结构
      • 3.2 Loss
    • 4. Exp
    • 5. Discussion
      • 5.1 二分匹配
      • 5.2 注意力机制
      • 5.3 方法存在的问题
    • 6. Conclusion
    • 参考

1. Abs

两句话概括:

  1. 第一个真正意义上的端到端检测器
  2. 最早将transformer应用到计算机视觉领域方法之一

2. Intro

基于Conv目标检测方法,如YOLO,在精度和速度上都已经非常优秀。
但是这些传统算法往往需要prior和post-process流程,导致额外的计算量,需要复杂的代码来部署模型。

prior:例如,YOLOv5使用聚类算法提前计算anchor boxes
post-process:例如,NMS去除多余预测框

DETR则完全不需要这些,从输入到输出,一气呵成,简洁优雅。

3. Method

3.1 模型结构

网络架构如图所示,同样非常简单
【目标检测】对DETR的简单理解_第1张图片

  1. 一个backbone:提取特征
  2. 两个transformer
    1. encoder:将特征图展平成序列,加上位置编码,使用self-attn进一步处理,使得每个特征向量关注到合适的特征表示
    2. decoder:cross-attn,query在特征序列上“逐个问询是否存在目标,目标在哪,有多大”,使得query学习到目标的位置信息和特征表示
  3. 两个FFN:对query的信息进行“解压”,得到预测结果(类别和边界框)。

3.2 Loss

分类:负log损失
bbox:(GIoU)IoU损失 + L1损失

4. Exp

除了AP75和APs,DETR在同样的参数规模下都超过了Faster RCNN,但是计算量和检测速度更慢。
【目标检测】对DETR的简单理解_第2张图片

5. Discussion

5.1 二分匹配

匈牙利算法可参考[3]

  • 由于DETR默认使用100个queries,即模型输出100个预测框,而实际目标数量只有几个;
  • 因此,需要通过二分匹配算法得到最终的预测结果;
  • 简单来说,就是要把query和gt一一对应,如果一张图像中有5个gt,则在100个queries中通过匹配算法筛选出5个最接近gt的预测结果。

5.2 注意力机制

如图是decoder的注意力可视化结果,可以看到query更关注于物体的边边角角,为目标定位提供了有效信息。

5.3 方法存在的问题

  1. 使用self-attn,太长的特征序列会导致爆炸的计算量,因此输入图像也不能太大
  2. transformer收敛速度慢,训练时间长
  3. 小目标效果一般

6. Conclusion

DETR为目标检测提供了简洁有效的端到端检测框架,且达到了主流检测器的水平,但仍然有较多改进空间。

参考

[1] https://arxiv.org/abs/2005.12872
[2] https://www.bilibili.com/video/BV1ZT411D7xK/
[3] https://blog.csdn.net/qq_54185421/article/details/125992305

你可能感兴趣的:(深度学习,目标检测,人工智能,计算机视觉)