- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
辞落山
scikit-learn线性回归python
1.引言简要介绍线性回归模型及其在机器学习中的应用。2.创建自定义数据集通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。importnumpyasnpimportmatplotlib.pyplotasplt#生成自定义数据np.random.seed(42)X=2*np.random.rand(100,1)y=4+3*X+np.random.randn(100,1)3.使用s
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
知识鱼丸
machinelearning逻辑回归算法机器学习
1.数据准备首先,我们需要一些示例数据。在这个例子中,我们将生成一些简单的二维数据点,并为其分配标签。2.定义逻辑回归模型接下来,我们定义一个简单的逻辑回归模型。3.训练模型定义损失函数和优化器,然后进行模型训练。4.保存模型训练完成后,我们可以保存模型的状态字典。5.加载模型并进行预测加载保存的模型,并进行预测。importtorchimporttorch.nnasnnimporttorch.o
- 使用numpy自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预
辞落山
numpytensorflow逻辑回归
1.引言逻辑回归(LogisticRegression)是一种常见的分类算法,广泛应用于二分类问题。在本篇博客中,我们将使用numpy生成一个简单的自定义数据集,并使用TensorFlow框架构建和训练逻辑回归模型。训练完成后,我们会保存模型,并演示如何加载保存的模型进行预测。2.创建自定义数据集首先,我们使用numpy生成一个简单的二分类数据集,包含两个特征和对应的标签。标签0表示负类,标签1表
- 梯度提升用于高效的分类与回归
纠结哥_Shrek
分类回归数据挖掘
使用决策树(DecisionTree)实现梯度提升(GradientBoosting)主要是模拟GBDT(GradientBoostingDecisionTrees)的原理,即:第一棵树拟合原始数据计算残差(负梯度方向)用新的树去拟合残差累加所有树的预测值重复步骤2-4,直至达到指定轮数下面是一个纯Python+PyTorch实现GBDT(梯度提升决策树)的代码示例。1.纯Python实现梯度提升
- 大数据分析案例-基于逻辑回归算法构建抑郁非抑郁推文识别模型
艾派森
大数据分析案例合集机器学习人工智能python数据挖掘回归
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+喜欢大数据分析项目的小伙伴,希望可以多多支持该系列的其他文章大数据分析案例合集
- 【机器学习】如何在Jupyter Notebook中安装库以及简单使用Jupyter实现单变量线性回归的模型f
Lossya
机器学习jupyter线性回归人工智能开发语言python学习
引言JupyterNotebook中有一些魔法指令,需要安装第三方库文章目录引言一、安装方法方法一:使用`pip`或`conda`命令方法二:在命令行(终端或命令提示符)中安装二、使用JupyterNotebook实现单变量线性回归的模型fw,bf_{w,b}fw,b2.1工具2.2问题陈述2.3创建`x_train`和`y_train`变量2.4训练示例的数量`m`2.5训练示例`x_i,y_i
- 科研绘图系列:R语言绘制线性回归连线图(line chart)
生信学习者1
SCI科研绘图系列r语言线性回归数据可视化
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍加载R包数据下载导入数据数据预处理画图保存图片系统信息参考介绍科研绘图系列:R语言绘制线性回归连线图(linechart)加载R包library(tidyverse)library(ggthemes)library(readxl)数据下载所需要的数据和代码通过以下链接下载:百度网盘链接:
- YOLO 目标检测编程详解
不知名靓仔
YOLO目标检测人工智能
引言目标检测是计算机视觉中的一个重要任务,它旨在识别图像中的对象并定位这些对象的位置。YOLO(YouOnlyLookOnce)是一种流行的目标检测算法,因其速度快且准确度高而广受好评。本文将深入探讨YOLO的原理及其实现方法,并提供一个使用Python和PyTorch的示例代码。项目源码见最下方1.YOLO算法简介YOLO算法的核心思想是将目标检测视为回归问题,而不是传统的分类加定位的两阶段方法
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- PyTorch 框架实现线性回归:从数据预处理到模型训练全流程
大模型铲屎官
PyTorchpytorch线性回归人工智能深度学习python
系列文章目录Pytorch基础篇01-PyTorch新手必看:张量是什么?5分钟教你快速创建张量!02-张量运算真简单!PyTorch数值计算操作完全指南03-Numpy还是PyTorch?张量与Numpy的神奇转换技巧04-揭秘数据处理神器:PyTorch张量拼接与拆分实用技巧05-深度学习从索引开始:PyTorch张量索引与切片最全解析06-张量形状任意改!PyTorchreshape、tra
- 机器学习建模流程 day02
扫把星133
机器学习人工智能python
机器学习建模流程通常可以分为以下几个主要步骤:问题定义与数据收集:确定问题的类型(分类、回归、聚类等可见上篇所讲内容)和目标。收集相关数据,可以是从数据库、API、文件或其他来源获取。注释:数据库是计算机里面的存储的数据的,当然可以对数据进行一些操作增删改查,通常用于存储大量结构化数据,并提供高效的数据操作和查询功能。API(ApplicationProgrammingInterface,应用程序
- 【DL】神经网络与机器学习基础知识介绍(一)
MengWoods
深度学习机器学习神经网络人工智能
原博客:https://mengwoods.github.io/post/dl/009-dl-fundamental/文章目录基本通用概念梯度下降算法数据工程训练技术偏差与方差防止过拟合评估指标决策树基本通用概念机器学习的类型:监督学习(SupervisedLearning):分类,回归无监督学习(UnsupervisedLearning):聚类,降维强化学习(ReinforcementLearn
- Deepseek爆火背后的多Token技术预测
明哲AI
AIGC人工智能大模型RAG多token预测deepseek
近年来,大语言模型(LLMs)的发展如火如荼,它们在聊天机器人、文档生成、代码编写等领域大放异彩。然而,随着模型规模的增加,生成效率也成为了一大瓶颈。传统的自回归语言模型需要逐字生成(token-by-token),这种方式不仅耗时,还限制了模型在实时场景中的表现。那么,有没有一种方法可以加快生成速度,同时保持文本质量?答案是:多Token预测(Multi-TokenPrediction,MTP)
- 均方误差(MSE)揭秘:预测模型的“真面目”
星际编程喵
Python探索之旅pythondjangoflask算法数学建模
前言在这个充满数据的世界里,我们需要各种方式来衡量一个模型的表现,尤其在回归问题中,均方误差(MSE)是我们非常常见的“好朋友”。它就像一位忠诚的侦探,默默为我们揭示预测值与实际值之间的真相。今天,让我们一起进入均方误差的世界,看看它是如何用简单却有效的方式,帮助我们准确评估模型的预测能力。简介均方误差(MSE,MeanSquaredError)是衡量预测值与实际值之间差异的常见指标。在回归问题中
- 为AI聊天工具添加一个知识系统 之76 详细设计之17 正则表达式 之4 正则表达式模板
一水鉴天
人工智能机器学习算法
Q712、三“化”(使用三种不同的定义方法:规定定义法-线性回归/内涵定义法--一阶迭代/外延定义法--单调递归)整体形成一个双人零和的局面Method()规定式。给出问题“law是什么”的三种答案:1)符合(事实符合公式)内涵和外延的逆关系,2)遵循(逻辑符号)拓扑特征不变性,3)基于(信念坚持)时间不可逆公理根据你所描述的框架,三“化”(规定定义法-线性回归、内涵定义法-一阶迭代、外延定义法-
- python3调用arcpy地理加权回归_混合地理加权回归python实现代码
weixin_39942995
【实例简介】通过python编码实现MGWR、MGWTR模型的求解。能够解决空间非平稳性问题。【实例截图】【核心代码】mgwr-py└──mgwr-master├──CHANGELOG.md├──LICENSE├──MANIFEST.in├──README.md├──doc│├──Makefile│├──_static││├──images│││├──gwr-mgwr.png│││└──pysal
- python3调用arcpy地理加权回归_分析地理加权回归分析结果的操作方法
weixin_39545269
1从地理加权回归(GWR)工具生成的输出包括以下内容:输出要素类可选系数栅格表面整体模型结果的消息窗口报告显示模型变量和诊断结果的辅助表预测输出要素类2下文中将使用一系列运行GWR和解释GWR结果的步骤对以上每项输出进行说明。通常将以普通最小二乘法(OLS)开始回归分析。有关详细信息,请参阅回归分析基础知识和解释OLS回归结果。回归分析的一种常用方法是在移动到GWR之前识别可能的最佳OLS模型。此
- 数据挖掘常用算法模型简介
大乔乔布斯
数据挖掘线性回归决策树
以下是数据挖掘中常用的算法模型及其简称、英文全称和使用场景的简要介绍:1.决策树(DecisionTree,DT)常用算法:CART:ClassificationandRegressionTreeID3:IterativeDichotomiser3C4.5:基于ID3改进使用场景:分类问题(如信用风险评估、客户分类)回归问题(如预测房价)特点:易解释、适合处理非线性数据。2.随机森林(Random
- Tensorflow入门——训练结果的保存与加载
weixin_34087301
人工智能python数据库
2019独角兽企业重金招聘Python工程师标准>>>训练完成以后我们就可以直接使用训练好的模板进行预测了但是每次在预测之前都要进行训练,不是一个常规操作,毕竟有些复杂的模型需要训练好几天甚至更久所以将训练好的模型进行保存,当有需要的时候重新加载这个模型进行预测或者继续训练,这才是一个常规操作我们依然使用最简单的例子进行说明,这里沿用Tensorflow入门——实现最简单的线性回归模型的预测这个例
- 使用scikit-learn实现线性回归对自定义数据集进行拟合
Luzem0319
scikit-learn线性回归python
1.引入必要的库首先,需要引入必要的库。scikit-learn提供了强大的机器学习工具,pandas和numpy则用于数据处理,matplotlib用于结果的可视化。importpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.linear_modelimportLinear
- 使用PyTorch实现逻辑回归:从训练到模型保存与加载
Luzem0319
pytorch逻辑回归人工智能
1.引入必要的库首先,需要引入必要的库。PyTorch用于构建和训练模型,pandas和numpy用于数据处理,matplotlib用于结果的可视化。importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoader,TensorDatasetimportpandasaspdimport
- scikit-learn基本功能和示例代码
weixin_30777913
深度学习机器学习pythonscikit-learn
scikit-learn(简称sklearn)是一个广泛使用的Python机器学习库,提供了丰富的工具和算法,涵盖了数据预处理、模型训练、评估和优化等多个方面。scikit-learn是一个功能强大的机器学习库,涵盖了数据预处理、分类、回归、聚类、降维、模型选择与评估等多个方面。通过上述代码示例,您可以快速上手并使用scikit-learn进行机器学习任务。以下是对scikit-learn主要功能
- 使用 Python 和 scikit-learn 实现 KNN 分类:以鸢尾花数据集为例
弥树子
pythonscikit-learn分类
在机器学习的世界里,K-NearestNeighbors(KNN)算法是一种简单而强大的分类方法。它基于一个直观的想法:相似的数据点往往属于同一类别。本文将通过Python的scikit-learn库实现KNN分类,以经典的鸢尾花数据集为例,展示从数据加载到模型评估的完整流程。1.KNN算法简介KNN是一种监督学习算法,主要用于分类和回归任务。它的工作原理非常简单:对于一个新的数据点,算法会查找训
- ultralytics 是什么?
博刻
AI学习笔记python
ultralytics是一个用于计算机视觉任务的Python库,专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现YOLO(YouOnlyLookOnce)系列模型,特别是最新的YOLOv8。1.YOLO是什么?YOLO是一种流行的目标检测算法,以其速度快和精度高而闻名。YOLO的核心思想是将目标检测问题转化为一个回归问题,直接预测目标的边界框和类别。YOLOv8是YOL
- 开放传神(OpenCSG)手撕Sora的Diffusion Transformer (DiT)算法
OpenCSG
transformer算法深度学习人工智能stablediffusion
“Sora的出现不是偶然,而是经过长期积累、反复试错及用户反馈的必然。”OpenAI尝试过递归网络、生成对抗网络、自回归Transformer及扩散模型。最终诞生了DiffusionTransformer。其充分利用了大语言模型Token的好处,让像素也能够被预测(Patches)。Sora的诞生不亚于2023年ChatGPT的出现,因为我们的世界是一个五彩斑斓的图像和视频组成。Sora通过社区和
- 最小二乘法-线性回归 和 梯度下降法
梦回楼~
最小二乘法算法机器学习人工智能
最小二乘法一、最小二乘法概念以及应用 最小二乘法(LeastSquaresMethod,LSE)是一种数学优化技术,主要用于寻找最佳拟合给定数据点的函数。它通过最小化观测值与模型预测值之间的差的平方和来估计模型参数。 换成听得懂的话说就是,我们有一组数据(x1,y1),(x2,y2)…(xn,yn),我们也知道他的数学表达式的形式例如y=kx+b(但是不知道k、b的具体值),但是(xn,yn)
- 从零推导线性回归:最小二乘法与梯度下降的数学原理
Echo-Nie
机器学习机器学习线性回归人工智能梯度下降数学推导
欢迎来到我的主页:【Echo-Nie】本篇文章收录于专栏【机器学习】本文所有内容相关代码都可在以下仓库中找到:Github-MachineLearning1线性回归1.1什么是线性回归线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直线(或者一个平面),让这条直线尽可能地“拟合”已有的数据点,通过这条直线,我们可以预测新的数据。eg:假设你想预测房价,你知道房子的大小(面积)
- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
灵封~
scikit-learn线性回归python
一、导入必要的库importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.linear_modelimportLinearRegressionfromsklearn.metricsimportmean_squared_error,r2_score二、加载自定义数据集#创建自定义数据集#假设我们有一个简单
- 自定义数据集使用框架的线性回归方法对其进行拟合
〖是♂我〗
线性回归算法回归
代码:#导入必要的库importtorchimportnumpyasnpimportmatplotlib.pyplotasplt#定义数据集:二维数据,其中第一列是特征x,第二列是目标值ydata=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.6],[0.4,3
- 使用 PyTorch 实现逻辑回归:从数据到模型保存与加载
弥树子
pytorch逻辑回归人工智能
在机器学习中,逻辑回归是一种经典的分类算法,广泛应用于二分类问题。本文将通过一个简单的示例,展示如何使用PyTorch框架实现逻辑回归模型,从数据准备到模型训练、保存和加载,最后进行预测。1.数据准备逻辑回归的核心是通过学习数据中的特征与标签之间的关系来进行分类。在本示例中,我们手动创建了一个简单的二维数据集,包含两类数据点。第一类数据点的标签为0,第二类数据点的标签为1。class1_point
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring