- Spike Neural Network Introduction and Research Directions
Debug_Snail
SNNNeuralnetwork人工智能AIGC
1.SNNs是一类神经网络,其中的神经元通过脉冲(spikes)来传递信息,而不是像传统的人工神经网络中那样使用实数值激活。SNNs更接近生物学上的神经系统,因为生物神经元也是通过电信号脉冲来传递信息的。与传统神经网络相比,SNNs具有以下几个特点:更低的功耗-因为只在发生脉冲时才激活神经元,所以整体功耗会比传统神经网络低很多。这使得SNNs很适合应用在对功耗要求非常严格的场景,如边缘计算。时序编
- 数据分享|1961-2017年中国0.25°×0.25° 逐日地表水文数据集(VIC-CN05.1)
JGiser
GIS数据未分类(气象等等)arcgis
缺乏长期高精度的地表观测给我国水文气象研究带来了很大的不确定性。本数据基于陆面水文模式(VICv4.2.d,VariableInfiltrationCapacitymodel)模拟构建了中国1961~2017年0.25°×0.25°逐日地表水文数据集(VIC-CN05.1)。大气驱动场(降水、温度和风速)来自基于中国2400多个站点观测资料插值而成的0.25°×0.25°逐日气象数据集(CN05.
- CAS:1178931-50-4,GalNAz-1-P,N-azidoacetylgalactosamine tetraacylated 1-phosphate
陕西星贝爱科
GalNAz-1-P1178931-50-4
GalNAz-1-P是一种化合物,通常用于糖基化生物学研究中。以下是关于它的详细介绍:基本信息中文名称:GalNAz-1-P,N-azidoacetylgalactosaminetetraacylated1-phosphate英文名称:GalNAz-1-P,N-azidoacetylgalactosaminetetraacylated1-phosphateCAS号:1178931-50-4化学结构
- 【人生算法:解码命运背后的现代生存法则】
调皮的芋头
人工智能神经网络AIGC机器学习
人生算法:解码命运背后的现代生存法则在浙江义乌小商品市场,一个初中毕业的摊主能流利使用八国语言;在深圳华强北,草根创业者凭一款充电宝设计获得千万融资。这些当代传奇背后,暗合着古老东方智慧的结构性密码。当我们用社会科学的手术刀解剖"一命二运三风水"的千年古训,发现其本质是套精密的人生算法系统。一、先天参数:人生操作系统的初始配置基因遗传构成命运的基础代码。哈佛大学行为遗传学研究显示,身高、智力等特质
- OpenCV计算摄影学(16)调整图像光照效果函数illuminationChange()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述对选定区域内的梯度场应用适当的非线性变换,然后通过泊松求解器重新积分,可以局部修改图像的表观照明。cv::illuminationChange是OpenCV中用于调整图像光照效果的一个函数。通过这个函数,你可以修改图像中的光照分布,以达到改善图像视觉效果或者为图像
- 生物信息学工作流(Bioinformatics Workflow):概念、历史、现状与展望?
lisw05
生物信息学生物信息学工作流
李升伟整理1.引言生物信息学工作流是指通过一系列计算步骤和工具,对生物学数据进行处理、分析和解释的系统化流程。随着高通量测序技术的普及和生物数据的爆炸式增长,生物信息学工作流在基因组学、转录组学、蛋白质组学等领域中扮演着至关重要的角色。它不仅提高了数据分析的效率,还为生命科学研究提供了新的视角和方法。2.生物信息学工作流的概念生物信息学工作流的核心是将复杂的生物学数据分析任务分解为多个可管理的步骤
- 遗传算法基础讲解
HH予
深度学习
一、遗传算法基础1.什么是遗传算法?一种模拟生物进化过程的优化算法,基于达尔文的“自然选择”和“遗传学理论”。核心思想:通过选择(优胜劣汰)、交叉(基因重组)、变异(基因突变)操作,逐步逼近问题的最优解。2.为什么用遗传算法?适用性强:解决复杂的非线性、多峰、离散或连续优化问题。无需梯度信息:对目标函数的数学性质要求低,适合黑箱优化。全局搜索能力:通过种群并行搜索,避免陷入局部最优,适合多维优化。
- AbMole肿瘤研究综述(二):靶向抑制剂与人源单抗,开启肿瘤研究新篇章
AbMole
AbMole生物化学生物试剂科研生物实验
肿瘤的研究一直是生命科学和基础医学领域中的热门话题,随着分子生物学和肿瘤生物学等学科的发展,人们逐渐明确了一系列与肿瘤发生和转移等密切关系的基因、蛋白,包括多种受体酪氨酸激酶(RTKs,如EGFR、ALK、c-Met、TRK、BCR-ABL等)和非RTKs(如BCR-ABL、BTK、CDK等),以及一些重要的细胞信号通路,如RAS/RAF/MEK、PI3K/mTOR等。AbMole向大家介绍围绕上
- 数字免疫系统:现代网络安全的生物启发式重构
Bruce_xiaowei
笔记总结经验web安全重构网络
数字免疫系统:现代网络安全的生物启发式重构引言在生物进化史上,人类免疫系统完成了对数千种病原体的精准识别与防御;在数字世界,网络安全系统正面临相似的挑战。这种跨维度的相似性为技术架构师提供了独特的认知框架——通过将免疫系统的动态防御机制映射到网络安全领域,我们不仅能构建更直观的安全模型,更能从生命科学四十亿年的进化智慧中汲取灵感。一、免疫系统的数字化映射1.物理防御层的生物学解构网络安全中的防火墙
- Python案例--养兔子
gabadout
Python案例python数学建模开发语言
兔子繁殖问题是一个经典的数学问题,最早由意大利数学家斐波那契在13世纪提出。这个问题不仅在数学领域具有重要意义,还广泛应用于计算机科学、生物学和经济学等领域。本文将通过一个具体的Python程序,深入探讨兔子繁殖问题的建模和实现,并展示程序的运行结果。一、问题描述假设有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子。假设兔子都不会死亡,问每个月的兔子总数是多
- 蚁群算法(Ant Colony Optimization, ACO)
QRSN
运筹优化算法python人工智能
蚁群算法(AntColonyOptimization,ACO)目录算法起源核心思想数学模型算法流程参数调优改进变体应用场景优缺点分析代码框架最新研究一、算法起源1.1生物学基础蚂蚁觅食行为:自然界蚂蚁通过释放**信息素(Pheromone)**标记路径,较短路径因信息素累积更快,吸引更多蚂蚁选择,形成正反馈。自组织特性:单个蚂蚁行为简单,群体涌现出智能协作能力。1.2提出与发展1992年:Marc
- GO和kEGG富集分析
begei
面试学习路线阿里巴巴golang开发语言后端
文章目录前言一、GO和KEGG1.**GO富集分析:**2.KEGG富集分析:二、使用步骤1.数据处理2.GO分析3.KEGG富集总结前言GO(GeneOntology,基因本体)富集和KEGG(KyotoEncyclopediaofGenesandGenomes,京都基因与基因组百科全书)富集分析能够从不同角度揭示基因的功能和生物学意义一、GO和KEGG1.GO富集分析:说明基因在分子功能(Mo
- R语言安装生物信息数据库包
Bio Coder
R语言r语言数据库
R语言安装生物信息数据库包在生物信息学领域,R语言是重要的数据分析工具。今天,我们就来聊聊在R语言环境下,安装生物信息数据库包(org.*.*.db)的步骤。为什么要安装org.*.*.db系列包生物信息学分析中,我们常处理基因相关数据,比如基因功能注释、位置、参与的生物学通路等。org.*.*.db系列包就像基因百科全书,提供不同物种的基因注释信息。比如研究人类基因时,能帮我们快速获取基因别名、
- 遗传算法 定义+特性+原理+公式+Python示例代码(带详细注释)
快乐的向某
python机器学习人工智能算法
文章目录引言定义特性基本原理和公式推导基本原理公式推导实现步骤和代码实现实现步骤Python代码实现(带详细注释)应用案例优化和挑战结论引言遗传算法(GeneticAlgorithm,GA)是进化计算技术的一种,广泛应用于解决优化和搜索问题,其灵感来源于自然界的进化过程。这种算法通过模拟自然选择、遗传、交叉和突变等生物学机制来优化问题解决方案。遗传算法的通用性和高效性使其在工程、科研、经济和艺术等
- 鸢尾花分类项目 GUI
编织幻境的妖
分类数据挖掘人工智能
1.机器学习的定义机器学习是一门人工智能的分支,专注于开发算法和统计模型,使计算机能够在没有明确编程的情况下从数据中自动学习和改进。通过识别数据中的模式和规律,机器学习系统可以做出预测或决策。常见的应用包括图像识别、语音识别、推荐系统等。2.为什么使用鸢尾花数据集(Irisdataset)鸢尾花数据集是一个经典的多类分类问题数据集,由英国统计学家和遗传学家RonaldFisher在1936年引入。
- 深度学习在蛋白质-蛋白质相互作用(PPI)领域的研究进展(2022-2025)
AndrewHZ
深度学习人工智能transformer算法科技
一、蛋白质-蛋白质相互作用(PPI)的定义与生物学意义蛋白质-蛋白质相互作用(Protein-ProteinInteraction,PPI)是指两个或多个蛋白质通过物理结合形成复合物,进而调控细胞信号传导、代谢、免疫应答等生命活动的过程。PPI是生物体内复杂功能网络的核心,例如酶与底物的结合、抗体与抗原的识别、受体与配体的信号传递等均依赖于此。据估计,人类蛋白质组中约80%的功能通过PPI实现,其
- 单细胞分析(11)——scRNA-seq数据整合
生信小鹏
生信技能学习scRNA单细胞测序经验分享
单细胞RNA-seq数据整合:SeuratIntegrationandHarmony1.研究背景在单细胞RNA测序(scRNA-seq)研究中,批次效应(batcheffect)是不可忽视的问题。不同样本来源(如多个实验室、不同测序平台、不同患者)可能会导致非生物学因素的影响,从而影响数据分析的准确性。之前单独写过Harmony去除批次,为了更好地整合多个样本,这次使用以下两种方法进行批次校正:S
- Python实现基因遗传算法
闲人编程
pythonpython开发语言基因遗传算法
目录基因遗传算法简介基因遗传算法的基本步骤Python实现基因遗传算法场景:优化二次函数Python代码实现代码解释场景说明总结基因遗传算法简介基因遗传算法(GeneticAlgorithm,GA)是一种基于自然选择和遗传学原理的优化算法,适用于求解复杂的组合优化问题。它通过模拟生物进化过程,如选择、交叉、变异等,逐步优化种群中的个体,最终逼近全局最优解。基因遗传算法的基本步骤初始化种群:随机生成
- 生物制药企业选择谷歌云的理由有哪些?
人工智能数据挖掘
AI发展的这一年,科学家也紧随其后,透过AI拓展更多微观层面的生物学奥义,包括蛋白质折叠等。生物制药公司也加大了在药物研发领域的投入,其中一方面就是搭载云平台。那么,生物制药公司选择谷歌云的原因有哪些呢?作为谷歌云菁英合作伙伴,CloudAce云一梳理了以下几个要点:强大的计算能力和数据分析功能:谷歌云提供强大的高性能计算(HPC)和人工智能(AI)功能,可帮助生物制药公司处理和分析大量数据。这对
- 聚类算法与应用
theskylife
数据挖掘算法聚类机器学习数据挖掘人工智能
目录写在开头1.聚类算法简介2.K均值聚类2.1基本原理2.1.1中心点与数据点的距离2.1.2簇的形成和迭代优化2.2应用场景2.2.1图像分割2.2.2客户分群3.层次聚类3.1基本原理3.1.1树状结构的建立3.1.2聚合或分裂策略3.2应用场景3.2.1生物学中的基因表达数据聚类3.2.2文本数据的主题分类4.聚类算法的实践应用4.1数据准备与预处理4.2算法选择与模型训练4.2.1根据任
- 三甲医院大型生信服务器多配置方案剖析与应用(2024版)
Allen_LVyingbo
数智化医院2024服务器数据库运维
一、引言1.1研究背景与意义在当今数智化时代,生物信息学作为一门融合生物学、计算机科学和信息技术的交叉学科,在三甲医院的科研和临床应用中占据着举足轻重的地位。随着高通量测序技术、医学影像技术等的飞速发展,生物医学数据呈爆发式增长,这些数据涵盖了基因组、蛋白质组、代谢组等多个层面的信息,为医学研究和临床诊断提供了前所未有的机遇与挑战。从科研角度来看,生物信息学助力三甲医院开展前沿性的医学研究。通过对
- SnapGene 4.3.6 win 中文完美不闪退
科研小行星
SnapGene是一款功能非常强大的分子生物学软件,融合了DNAStar,DNAman等软件的优点,软件体积小,大量运用了可视化显示效果和操作效果,非常容易上手。4.3.6版位目前最稳定版,序列不会闪退隐藏,下载见文末。供专业的生物分析功能,可以通过这款软件在电脑分析生物实验数据,你可以在软件新建一个DNA,随后使用软件内置的功能帮助你分析蛋白酶,支持选择酶、使用酶组、隐藏酶、保存酶组、输出酶组、
- bulk-seq数据和单细胞数据的联合分析
追风少年ii
python算法人工智能
作者,EvilGenius随着现在研究的不断深入,越来越多的情况需要我们对多种数据的联合分析,其中在单细胞没有出来之前,普通转录组(bulk-seq)的测序结果是非常多的,也解决了我们很多的生物学问题,单细胞技术的出现,更高分辨率的同时,与普通转录组的联合分析也是现在分析的一个关注点。在文章《Distinctandtemporary-restrictedepigeneticmechanismsre
- FragPipe: 一个强大的蛋白质组学数据分析平台
2401_87189860
数据分析数据挖掘
FragPipe简介FragPipe是一个由Nesvizhskii实验室开发的综合性蛋白质组学数据分析平台。它以MSFragger搜索引擎为核心,集成了多种功能强大的分析工具,为研究人员提供了从原始数据处理到生物学解释的一站式解决方案。FragPipe具有用户友好的Java图形用户界面(GUI),同时也支持命令行模式,可以在Windows、Linux或云环境中运行。FragPipe的主要特点快速高
- 创新药周报及靶点研发分析报告
魔都财观
本文还有配套的精品资源,点击获取简介:本报告深入探讨医药行业,提供最新创新药物研发动态,并分析全球和国内的医药趋势。报告关注靶点研发的关键性,详细介绍特定靶点如肿瘤抑制因子等的生物学功能和作为药物靶点的潜力,同时深入临床试验阶段的新药项目,讨论新药审批流程和政策环境。报告还涵盖行业投资和合作动态,预测未来市场趋势,为投资者和决策者提供宝贵的行业洞见。1.医药行业研发动态分析1.1行业背景概述医药行
- 神经网络入门推荐知识,神经网络入门书籍推荐
快乐的小肥熊
ai智能写作神经网络matlab人工智能python
适合初学者的神经网络和遗传算法资料遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带
- 目标跟踪概念、多目标跟踪算法SORT和deep SORT原理
yhwang-hub
深度学习
目录目标跟踪、单目标跟踪、多目标跟踪的概念欧氏距离、马氏距离、余弦距离欧氏距离马氏距离余弦距离SORT算法原理SORT算法中的匈牙利匹配算法指派问题中的匈牙利算法预测模型(卡尔曼滤波器)数据关联(匈牙利匹配)目标丢失问题的处理SORT算法过程deepSORT算法原理状态估计轨迹处理分配问题的评价指标级联匹配深度表观描述子算法总结目标跟踪、单目标跟踪、多目标跟踪的概念目标跟踪分为静态背景下的目标跟踪
- DNA图谱分析:自动分析DNA图谱中的变异YOLOv5、YOLOv8、YOLOv10
2025年数学建模美赛
YOLO深度学习目标跟踪机器人人工智能
目录引言项目背景与目标YOLO模型简介DNA图谱数据集准备YOLOv5、YOLOv8和YOLOv10模型训练与优化DNA图谱变异检测的实现UI界面设计与实现评估与优化未来展望结论完整代码实现1.引言随着基因组学的进步,DNA图谱分析已经成为基因检测、疾病诊断、遗传学研究等领域的重要工具。在DNA图谱中,通常会呈现出染色体的多个片段,其中的一些变异可能对健康产生深远的影响。手工分析DNA图谱变异不仅
- 北大数学校友胡懿娟归国任教!重回母校,专注于统计学、微生物学和遗传学的交叉领域
量子位
关注前沿科技量子位又一科学家从美归国——北大数学系校友胡懿娟。援引人民日报消息,在北京大学北京国际数学研究中心发布的2024年工作回顾中显示,她于去年7月入职北大。回来之后,她将继续专注于统计学、微生物学和遗传学的交叉领域,致力于解决实际的生物医学数据分析问题。△北大官网截图网友纷纷为她点赞:能力与颜值并存!同时也感叹,越来越多的科学家选择回到祖国,为科学技术发展和人才培养添砖加瓦。北大数学校友胡
- 我心归处是敦煌:第2季《文化参考》174
陌上花开wen
174樊锦诗和彭金章:敦煌为什么是一门学科昨天文化参考谈到的《荒野上的大师:中国考古百年纪》,介绍了一群敢为人先的地质学家、古生物学家、人类学家、考古学家、建筑学家,它们是各自领域的拓荒者,也是走出书斋、走向旷野的第一代中国人,他们上下求索,前赴后继,终于成就了蔚为大观的浩瀚风气。这节课的《樊锦诗自述》讲述了她在北京大学的求学往事,与终身伴侣、武汉大学考古系创始人彭金章相濡以沫的爱情诗篇,以及50
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理