- Math.NET Numerics 库怎么装
9677
.net
你提到的缺少的库是Math.NETNumerics。关于Math.NETNumericsMath.NETNumerics是一个用于.NET平台的开源数学库,提供了以下功能:线性代数(矩阵运算、求解线性方程组等)。数值计算(积分、微分、优化等)。统计和概率分布。回归分析(包括多元线性回归)。它是C#中进行科学计算和数据分析的常用工具。安装Math.NETNumerics你可以通过NuGet包管理器安
- 数学建模(6)——预测类模型目录
Ice-cream-AI
数学建模
预测模型是一类通过分析和建模历史数据来预测未来结果的算法或模型。这些模型广泛应用于各种领域,包括金融、医疗、市场营销、气象、制造业等。以下是一些常见的预测模型:1.回归模型线性回归(LinearRegression):用于预测连续变量,通过拟合一个线性方程来最小化预测值和实际值之间的误差。多元线性回归(MultipleLinearRegression):扩展线性回归模型,使用多个特征进行预测。岭回
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- r语言 面板数据回归_R语言 之回归分析
你的麦克疯
r语言面板数据回归
回归分析(regressionanalysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,下列表格向我们展示了回归的不同类型以及其用途。本章为R语言回归分析之上部分,主要向读者们展示如何运用R语言完成ols(普通最小二乘)回归:简单线性回归、多项式回归、多元线性回归的语言编程示例,以及检验回归分析中统计假设的方法。回归类型用途简单线性用一个量化的解释变量来预测一
- 深度学习与图像识别:机器学习基础之回归
Shenrn_
机器学习回归深度学习
1.线性回归1.1一元线性回归1.2多元线性回归2.逻辑回归与线性回归的不同在于其将最终预测值y固定在一个范围之中2.1Sigmoid函数sigmoid函数表达式:p为预测出来的概率,范围在0-1之间,一般用于处理二分类问题,因为这个式子的一个显著特征在于:当z=0,p=0.5当z>0,p>0.5当z<0,p<0.5所以当对z进行多元线性回归表示的时候,以p的值来反映y_pre是一个不错的选择,此
- 吴恩达-机器学习-多元线性回归模型代码
StrawBerryTreea
机器学习机器学习线性回归python吴恩达
吴恩达《机器学习》2022版第一节第二周多元线性回归房价预测简单实现以下以下共两个实验,都是通过调用sklearn函数,分别实现了一元线性回归和多元线性回归的房价预测。一、一元线性回归importnumpyasnpnp.set_printoptions(precision=2)fromsklearn.linear_modelimportLinearRegression#输入数据X_train=np
- 机器学习--实现多元线性回归
y江江江江
机器学习机器学习线性回归人工智能
机器学习—实现多元线性回归本节顺延机器学习--线性回归中的内容,进一步讨论多元函数的回归问题y′=h(x)+w⊤∙x+by^{\prime}=h(x)+w^\top\bulletx+by′=h(x)+w⊤∙x+b其中,wT⋅x就是W1X1+w2X2+w3X3+⋯+wNXN\text{其中,}w^\mathrm{T}\cdotx\text{就是}_{W_1X_1}+w_2X_2+w_3X_3+\cd
- 【机器学习】多元线性回归
T0uken
Python全栈开发1024程序员节机器学习算法线性回归
在实际应用中,许多问题都包含多个特征(输入变量),而不仅仅是单个输入变量。多元线性回归是线性回归的扩展,它能够处理多个输入特征并建立它们与目标变量的线性关系。本教程将系统性推演多元线性回归,包括向量化处理、特征放缩、梯度下降的收敛性和学习率选择等,并使用numpy实现。最后,我们会通过sklearn快速实现多元线性回归模型。多元线性回归模型简介多元线性回归的模型公式为:y=X⋅w+by=X\cdo
- SPSS多元回归得到的VIF值要怎么看每个变量都有一个VIF值怎么判断多重共线性
xiamu_CDA
python
SPSS多元回归中的VIF值解读与多重共线性的判断当你在使用SPSS进行多元线性回归分析时,面对复杂的统计结果,可能会遇到一个问题:如何通过查看每一个解释变量的方差膨胀因子(VarianceInflationFactor,VIF)来判断是否存在多重共线性?这不仅是理论上的探讨,更是实际数据处理过程中不可或缺的一环。今天,我们就一起来揭开VIF值背后的秘密。什么是VIF值?方差膨胀因子(VIF)是用
- 多元线性回归模型:理论、应用与数学建模实例
小柒笔记
数学建模线性回归算法
引言多元线性回归模型是数学建模中的一种重要工具,它用于分析两个或两个以上自变量与一个因变量之间的关系。在许多实际问题中,如经济学、生物统计学、环境科学和社会科学等领域,多元线性回归模型都发挥着关键作用。本文将介绍多元线性回归模型的基本概念、数学表达式及其在数学建模中的应用。一、多元线性回归模型的基本概念1.1定义多元线性回归模型是指包含一个因变量和多个自变量的线性回归模型。数学上,它可以表示为:Y
- 深度学习实战一:线性回归(基于Pytorch,含数据和详细注释)
若北辰
Python深度学习深度学习线性回归pytorch
线性回归1、回归的概念2、回归的分类3、线性回归4、代码实现补充说明1、回归的概念回归的本来意思是,无论父母的身高多高或多矮,小孩的身高总是趋向于回到均值附近,也就是回归趋向均值!,这就是回归分析的本质2、回归的分类线性回归(又分为一元线性回归和多元线性回归)广义线性回归(又分为逻辑回归和对数回归)非线性回归3、线性回归线性回归是深度学习中最基础、最简单的模型。虽然简单,但是跟大多数监督学习算法的
- 海浪波高预测(背景调研)
傅科摆 _ py
文章解读python机器学习人工智能
#新星杯·14天创作挑战营·第7期#ps:图片由通义千问生成历史工作:针对更高细粒度、更高精度的波浪高度预测任务:MumtazAli等人提出了一种多元线性回归模型(MLR-CWLS),该模型利用协方差加权最小二乘法(CWLS)优化算法,借助历史波高、波周期、波向、海表面温度等多变量参数,实现对显著波高的准确预测;ShuntaoFan等人提出了一种基于长短期记忆网络(LSTM)的波高预测模型,用于快
- c++计算精解【12】
sakura_sea
物理模拟与3D计算c++开发语言
文章目录多元线性回归决定系数数学原理R2R^2R2调整R2R^2R2c++实现参考文献多元线性回归决定系数数学原理R2R^2R2R2R^2R2(决定系数)反映了自变量(输入变量)对因变量(输出变量)变异的解释能力。R2=1−SSresidualSStotalR^2=1-\frac{SS_{\text{residual}}}{SS_{\text{total}}}R2=1−SStotalSSresid
- 多元线性回归 python实现
雪可问春风
python机器学习numpy
importnumpyasnp#多元线性回归x=np.matrix([[2104,1416,1534,852,1],[5,3,3,2,1],[1,2,2,1,1],[45,40,30,36,1]])y=np.matrix([460,232,315,178])y1=np.matrix([460],[232].[315],[178])w=(x.T*x).I*x.T*yw1=(x.T*x).I*x.T*
- 2018-12-06
平凡的人生Dian
郭玉华六项精进打卡Day115一、学习与实践1.付出不亚于任何人的努力2.要谦虚不要骄傲3.要每天反省4.活着,就要感谢5.积善行,思利他6.不要有感性的烦恼分享计划永远赶不上变化,本来这周能上线的新渠道又因为渠道方那边出问题,没能及时上线。庆幸的是新的渠道基本落实到位了。希望一切都会好起来。
- 2018-12-06
知了文艺
图片发自App图片发自App图片发自App图片发自App我今天做了“非品牌,不创业”主题演讲,以自身经历告诉创业者要打造个人印记,塑造独特品牌文化!
- R实现线性回归逻辑回归
weixin_55475210
r语言线性回归逻辑回归
线性回归基本模型Y=β0+β1X1+β2X2+⋯+βmXm+ϵY=\beta_0+\beta_1X_1+\beta_2X_2+\cdots+\beta_mX_m+\epsilonY=β0+β1X1+β2X2+⋯+βmXm+ϵYYY为因变量X1,X2,…,XmX_1,X_2,\ldots,X_mX1,X2,…,Xm为m个自变量ϵ\epsilonϵ为残差lm()函数用于完成多元线性回归系数估计,回归系
- 2024国赛数学建模备战-数学建模思想方法大全及方法适用范围
V建模忠哥V
2024国赛数学建模
第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=uu=lnx来解决;
- 想与能2018-12-06
醉美田园
接了三个陌生电话,都是要报个性化培训的。说实在的,名额虽多,但都是为我们自家老师预留的,毕竟到年底了,得帮他们凑够学分,否则后果很严重。三位老师都如实说了自己的难题,就是学分不够,这个项目正合适,强烈要求报名。不同的是,两位是先打来电话确认,一位是转了一圈,把所有的手续都办齐了,包括领导们签字,再打来电话告知我。我一视同仁,先感谢其支持,再如实相告:本次是专为我们自家老师量身打造的项目,请他们关注
- Spark MLlib LinearRegression线性回归算法源码解析
SmileySure
Spark人工智能算法SparkMLlib
线性回归一元线性回归hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x——————–1多元线性回归hθ(x)=∑mi=1θixi=θTXhθ(x)=∑i=1mθixi=θTX—————–2损失函数J(θ)=1/2∑mi=1(hθ(xi)−yi)2J(θ)=1/2∑i=1m(hθ(xi)−yi)2—————31/2是为了求导时系数为1,平方里是真实值减去估计值我们的目的就是求其最小值最小二乘法要求较为
- 2018-12-06
幽幽白胖
有那么一瞬间,我会怀疑,我们给孩子多少爱,当我们离开的时候,就会给他们留下多少无法磨灭的悲伤,如果我们少爱他们一点,是不是我们的离去就会淡然一些?
- 2018-12-06
杰哥大宁
1.付出不亚于任何人的努力2.要谦虚,不要骄傲3.要每天反省4.活着,就要感谢5.积善行,思利他6.不要有感性的烦恼今日分享,这两天一直下雨,路上发生很多交通事故,大部分都是电瓶车和电瓶车,电瓶车和机动车,电瓶车和行人,电瓶车发生的频率很多,也很危险️,希望骑电瓶车的同事和朋友注意安全,安全无小事
- 学无止境
gyf16
高艳峰信阳网络中级九期坚持分享第251天2018-12-06随着气温明显下降,逐渐进入冬天模式,2018年也接近年尾。走过这一年是如此地漫长,虽然不堪回首,刻骨铭心,但更是激发再学习兴趣的一年。年初开始有幸跟着刘友龙老师学习SFBT,受益匪浅,意识到自己有很多需要改变的,看待每个人、每件事、每个问题,无论多么不尽人意,只有摆正心态,换位思考,最终都能找到不同的正向面,因而协助情绪的调整,赋予解决问
- 每天一个数据分析题(二百零一)
紫色沙
数据分析题库数据分析数据挖掘
以下关于线性回归模型的经典假设,描述正确的是()。A.自变量与因变量必须有线性关系B.正交假定:扰动项与自变量不相关,期望值为0C.扰动项之间相互独立且服从方差相等的同一个正态分布D.多元线性回归中,自变量之间不能有强共线性题目来源于CDA模拟题库点击此处获取答案
- 水云模型去除植被覆盖影响反演土壤水
海绵波波107
遥感反演与解译技术笔记c#
目录水云模型简介使用方法环境配置输入文件源代码输出文件反演方法构造土壤水分与散射系数拟合方程一、Matlab拟合线性曲线二、python多元线性回归波段计算讨论本文是在哨兵1号后向散射系数土壤水分反演文章上的拓展,由于雷达后向散射系数还会受到植被覆盖、土壤粗糙度等的影响,所以雷达后向散射系数直接反演土壤水难以精确,本文使用水云模型去除植被散射影响,在此基础上更精确地反演土壤水。水云模型简介<
- 2018-12-06
小荷画竹
让孩子成长的最好方法,就是让他找到自我。——刘墉要一个年轻人寻找自己,最好的方法,就是让他主动参与社会、关怀别人、贡献自己。
- 人工智能底层自行实现篇2——多元线性回归
ALGORITHM LOL
人工智能线性回归回归
2多元线性回归1.简介多元线性回归是一种统计建模方法,用于研究多个自变量与一个因变量之间的关系。它是简单线性回归的扩展,简单线性回归只涉及一个自变量和一个因变量。在多元线性回归中,我们可以使用多个自变量来预测一个因变量。多元线性回归的基本原理是通过拟合一个线性模型来描述自变量与因变量之间的关系。这个线性模型通常采用最小二乘法来估计参数,使得模型预测值与实际观测值之间的残差平方和最小化。多元线性回归
- 【机器学习】多元线性回归
Mount256
#机器学习机器学习线性回归人工智能
文章目录多元线性回归模型(multipleregressionmodel)损失/代价函数(costfunction)——均方误差(meansquarederror)批量梯度下降算法(batchgradientdescentalgorithm)特征工程(featureengineering)特征缩放(featurescaling)正则化线性回归(regularizationlinearregress
- 吴恩达机器学习全课程笔记第一篇
亿维数组
MachineLearning机器学习笔记人工智能
目录前言P1-P8监督学习无监督学习P9-P14线性回归模型成本(代价)函数P15-P20梯度下降P21-P24多类特征向量化多元线性回归的梯度下降P25-P30特征缩放检查梯度下降是否收敛学习率的选择特征工程多项式回归前言从今天开始,争取能够在开学之前(2.25)把b站上的【吴恩达机器学习】教程过一遍,并把笔记记录于此,本笔记将会把此课程每一p的重点内容及其截屏记录于此,以供大家参考和本人日后复
- 2018-12-06
Alee文润
计划:1、早起,完成日记2、提前去公司,修改完经纪人的问题3、新手活动加班完成开发。期待经纪人顺利上线。对待事情的态度一定要追求做好,今天你对自己放的水,未来都会要为之付出代价。开发的任务结束后,已测试的心态对自己完成的工作进行检查。这一点很有必要。也是一种总结和复盘的过程。
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f