- Python语言的安全开发
慕璃嫣
包罗万象golang开发语言后端
Python语言的安全开发引言在信息技术迅速发展的今天,网络安全问题愈发凸显。随着Python语言的广泛应用,尤其是在数据分析、人工智能、Web开发等领域,其安全问题越来越受到重视。Python作为一门高效且易于学习的编程语言,虽然在开发过程中为我们提供了很多便利,但如果忽视了安全性,将可能导致严重的安全漏洞和数据泄露等问题。因此,本文将围绕Python语言的安全开发展开讨论,重点分析常见的安全问
- Deepseek技术浅析(一)
爱研究的小牛
AIGC—概述大模型AIGC人工智能深度学习自然语言处理
DeepSeek是北京深度求索人工智能基础技术研究有限公司推出的人工智能技术品牌,专注于大语言模型(LLM)的研发与应用。其技术涵盖了从模型架构、训练方法到应用部署的多个层面,展现出强大的创新能力和应用潜力。以下将详细介绍DeepSeek的核心技术、工作原理以及具体实现方式。一、核心技术1.大语言模型(LLM)DeepSeek的核心产品是自研的大语言模型,其主要特点包括:(1)基于Transfor
- Synthesia技术浅析(四):自然语言处理
爱研究的小牛
AIGC—视频AIGC—虚拟现实AIGC—自然语言处理自然语言处理人工智能AIGC
Synthesia的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。一、文本转语音(TTS)1.关键组件Synthesia的TTS系统主要依赖于Tacotron2和WaveGlow模型。这些模型共同作用,将文本转换为高质量的语音。2.过程模型详解2.1文本预处理文本预处理是TTS的第一步,包括分词、标点符号处理、数字和日期格式转换等。分词(
- 启元世界(Inspir.ai)技术浅析(一)
爱研究的小牛
AIGC—游戏制作人工智能机器学习AIGC深度学习
启元世界(Inspir.ai)作为全球领先的通用人工智能平台公司,自2017年成立以来,一直致力于通过人工智能技术提升产业效能和生活体验。公司汇聚了来自全球顶尖公司和高等学府的技术专家,专注于深度强化学习、推荐算法以及机器学习系统平台等前沿领域,并成功将人工智能技术应用于数字娱乐、智能决策和机器人等多个领域。一、核心技术启元世界在人工智能领域取得了多项突破性进展,其核心技术涵盖了以下几个方面:1.
- Lumen5——AI视频制作,提取关键信息生成带有视觉效果的视频
爱研究的小牛
AIGC—视频人工智能AIGC深度学习
一、Lumen5介绍Lumen5是一款基于人工智能的自动化视频制作平台,专为非专业用户设计,帮助其将博客、文章、新闻等文字内容快速转换为视频。Lumen5的目标是简化视频制作流程,让内容创作者、市场营销人员、社交媒体团队等无需视频制作经验即可轻松制作吸引观众的高质量视频。二、Lumen5的主要功能文字转视频Lumen5最具特色的功能是通过AI自动将文本转化为视频。用户可以输入一段文字或直接粘贴文章
- python神经网络框架有哪些,python调用神经网络模型
小明技术分享
python神经网络深度学习
人工智能Python深度学习库有哪些由于Python的易用性和可扩展性,众多深度学习框架提供了Python接口,其中较为流行的深度学习库如下:第一:CaffeCaffe是一个以表达式、速度和模块化为核心的深度学习框架,具备清晰、可读性高和快速的特性,在视频、图像处理方面应用较多。Caffe中的网络结构与优化都以配置文件形式定义,容易上手,无须通过代码构建网络;网络训练速度快,能够训练大型数据集与S
- 使用shell将zip, rar压缩包压缩到同目录的文件夹中
ミッタン
unix
今天在研究压缩包解压的时候,发现批量化处理相关的脚本还是挺少的。和大家分享下如何快速用shell识别不同压缩包并在同名目录下解压缩。#unzipp.sh#echo"${FILE%%.*}"##=>example#echo"${FILE%.*}"##=>example.tar#echo"${FILE#*.}"##=>tar.gz#echo"${FILE##*.}"##=>gzcd{这里放入你的路径}
- mysql.sock.lock的作用_不能创建 mysql.sock.lock是怎么回事
0110君
15052003:26:57mysqld_safeStartingmysqlddaemonwithdatabasesfrom/usr/local/mysql/data2015-05-20T03:26:58.070269Z0[Warning]TIMESTAMPwithimplicitDEFAULTvalueisdeprecated.Pleaseuse--explicit_defaults_for_t
- 人工智能的前景与未来就业市场:机遇、挑战与社会影响
苹果酱0567
面试题汇总与解析java开发语言中间件springboot后端
随着科技的飞速发展,人工智能(AI)已经逐渐渗透到我们生活的方方面面,它不仅引领着技术革新的浪潮,更在无声中重塑着我们的就业市场和社会结构。站在这个时代的交汇点上,我们不禁要问:人工智能将如何影响我们的未来就业市场?它带来的究竟是机遇还是挑战?回望过去,每一次科技革命都伴随着就业市场的剧烈震荡。而今,人工智能作为第四次工业革命的核心驱动力,正以前所未有的速度改变着劳动力市场的格局。从自动化生产线上
- 探索SakuraLLM:轻小说与Galgame翻译的新纪元
蒋素萍Marilyn
探索SakuraLLM:轻小说与Galgame翻译的新纪元SakuraLLM适配轻小说/Galgame的日中翻译大模型项目地址:https://gitcode.com/gh_mirrors/sa/SakuraLLM在人工智能的浪潮中,SakuraLLM以其独特的魅力和强大的功能,成为了日中翻译领域的一颗璀璨明星。本文将深入介绍SakuraLLM项目,分析其技术特点,探讨其应用场景,并揭示其与众不同
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- SpringBoot中运行Yolov5程序
eqa11
springbootYOLO后端
文章目录SpringBoot中运行Yolov5程序一、引言二、环境搭建1、SpringBoot项目创建2、YOLOv5环境配置三、SpringBoot与YOLOv5集成1、创建Python服务2、SpringBoot调用Python服务四、使用示例1、创建控制器五、总结SpringBoot中运行Yolov5程序一、引言在人工智能领域,目标检测是一个热门且实用的技术。YOLOv5作为目标检测算法中的
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 模型架构选择:从传统NLP到Transformer
AI天才研究院
AI大模型应用入门实战与进阶大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
模型架构选择:从传统NLP到Transformer关键词:自然语言处理(NLP),模型架构,传统NLP,Transformer,RNN,CNN,预训练模型文章目录模型架构选择:从传统NLP到Transformer1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1传统NLP模型3.1.2RNN模型3.1.
- Llama 3:开源大模型的里程碑式突破
XianxinMao
llama开源
标题:Llama3:开源大模型的里程碑式突破文章信息摘要:Meta通过Llama3展现了开源LLM的重大突破:采用超大规模训练数据和多阶段训练方法(SFT、rejectionsampling、PPO和DPO),突破了传统的Chinchilla最优比例法则。在产品策略上,针对8B和70B两种规模采用不同的训练数据截止日期,实现差异化定位。即将发布的400B模型有望达到GPT-4级别性能,但同时也凸显
- 阿里巴巴Qwen团队发布AI模型,可操控PC和手机
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/这周,科技界的目光几乎都被DeepSeek的R1模型吸引,但阿里巴巴并没有袖手旁观。1月
- 对比DeepSeek、ChatGPT和Kimi的学术写作摘要能力
AIWritePaper官方账号
DeepSeekAIWritePaperChatGPT人工智能chatgptllama数据分析论文阅读
摘要摘要是文章的精华,通常在200-250词左右。要包括研究的目的、方法、结果和结论。让AI工具作为某领域内资深的研究专家,编写摘要需要言简意赅,直接概括论文的核心,为读者提供快速了解的窗口。下面我们使用DeepSeek、ChatGPT4以及Kimi辅助编写摘要。提示词:你现在是一名[计算机理论专家],研究方向集中在[人工智能、大模型、数据挖掘等计算机相关方向]。我现在需要撰写一篇围绕[人工智能在
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- 计算机视觉:解锁未来智能的钥匙及其代码实践
我的运维人生
计算机视觉人工智能运维开发技术共享
计算机视觉:解锁未来智能的钥匙及其代码实践在当今这个数据爆炸的时代,计算机视觉作为人工智能的一个重要分支,正以前所未有的速度推动着科技的边界。它不仅让机器“看懂”世界,更在自动驾驶、医疗影像分析、智能制造、安防监控等众多领域展现出巨大的应用潜力。本文将深入探讨计算机视觉的核心技术、最新进展,并通过一个具体的代码案例,展示如何在实践中应用这些技术,旨在为读者提供一个理论与实践相结合的全面视角。一、计
- ImportError: DLL load failed while importing _rust: 找不到指定的程序的解决方案
爱编程的喵喵
Python基础课程pythonImportErrorDLLloadfailed_rust解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了ImportError:DLLloa
- Rust中奖励函数的实现与应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Rust中奖励函数的实现与应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Rust,奖励函数,强化学习,机器学习,状态空间1.背景介绍1.1问题的由来在机器学习领域,特别是在强化学习(ReinforcementLearning,RL)中,奖励函数(RewardFunction)扮演着至关重要的角色。它定义了智能体(Agent)在执行任务时
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- 小南每日 AI 资讯 | 国产AI之光DeepSeek暴击硅谷??? | 25/01/29
小南AI学院
人工智能
1.中国AI模型震惊硅谷:DeepSeek为何一夜火出圈?国产AI大模型DeepSeek迅速崛起,引发硅谷关注。2.中国银行支持AI产业:1万亿元金融扶持助推智能化升级中国银行宣布提供1万亿元资金支持人工智能产业链发展,助力智能化升级。3.国产AI大模型DeepSeek惊艳全球:游戏科学冯骥称其为“国运级别科技成果”DeepSeek的AI模型引起全球关注,游戏科学的冯骥高度评价其意义。4.AI产业
- 【我的阅读】【nature |ai4science】Scientific discovery in the age of artificial intelligence【人工智能时代的科学发现】
算法研究员
【AI4Science】人工智能
相关资料:https://www.nature.com/articles/s41586-023-06221-2#Sec15文章目录Abstract摘要Conclusion结论Abstract摘要Artificialintelligence(AI)isbeingincreasinglyintegratedintoscientificdiscoverytoaugmentandaccelerateres
- Hugging Face挑战DeepSeek,AI开源竞赛升级!
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/DeepSeek的R1推理模型刚刚引发全球轰动,开源AI界的“顶流”HuggingFac
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- DeepSeek:硅谷AI格局的拐点?
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/本周,硅谷迎来了一个令人大跌眼镜的现实:打造先进人工智能模型,可能远没有想象中那么高深莫
- 理解随机森林算法
菌菌的快乐生活
算法随机森林机器学习
基本概念随机森林(RandomForest)是一种集成学习算法,它属于机器学习中的监督学习算法。简单来说,它就像是一群“专家”(决策树)在一起讨论并做出决策。想象你要判断一个水果是苹果还是橙子,你可以通过观察水果的颜色、形状、大小等特征。随机森林算法就是利用很多棵决策树来对这个水果进行判断。每一棵决策树就像一个小专家,它们根据自己对这些特征的判断来给出一个答案(是苹果还是橙子),最后综合这些小专家
- cuda 线程调度
weiwei0319
CUDA并发编程
硬件描述从硬件上看,一块显卡的最小单元是GPU核(或者叫做StreamProcessor),所有核心平均分配在多个SM中,而多个SM共同构成整块显卡的核心。比如RTX2070有36个StreamingMultiprocessors,而每个SM有64个CUDACores,RTX2070具有36*64=2304个CUDACores。软件描述thread,block,grid,warp都是CUDA编程上
- 编译dpdk19.08.2中example时一系列报错解决
monGyrate
linux服务器相关dpdkC语言DPDK数据平面开发套件ubuntu
dpdk19.08编译过程全解dpdk介绍问题描述编译过程执行Step1报错一解决方式报错二解决方式继续执行Step248的时候报错49没有修改成功输入60退出使用过程执行make报错一解决方式继续make报错二解决方式继续make执行生成文件helloworld报错三解决方式执行make完成参考链接dpdk介绍 数据平面开发套件(DPDK[1],DataPlaneDevelopmentKit)
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。