- 「热」Java 面试八股文之虚拟机篇
java晴天过后
java面试经验分享
Java虚拟机篇简述JVM内存模型线程私有的运行时数据区:程序计数器、Java虚拟机栈、本地方法栈。线程共享的运行时数据区:Java堆、方法区。简述程序计数器程序计数器表示当前线程所执行的字节码的行号指示器。程序计数器不会产生StackOverflowError和OutOfMemoryError。简述虚拟机栈Java虚拟机栈用来描述Java方法执行的内存模型。线程创建时就会分配一个栈空间,线程结束
- 国内三大云数据库测试对比
m0_63984008
数据库腾讯云阿里云
导读腾讯云数据库提供了可视化的运维操作页面和自动备份的能力,降低了数据库运维的门槛。同时云数据库还支持高可用架构,对数据的安全性和服务的可靠性更有保障。另外有的云数据库厂商还提供了诸如数据库审计、慢查询分析、数据回档等能力,大大减轻了数据库运维和DBA的工作量。我司CTO和技术总监都是腾讯系的,所以我们一开始就选用腾讯云的服务。他们家的云数据库提供了可视化的运维操作页面和自动备份的能力,降低了数据
- 量化交易如何利用算法模型进行股票筛选?其选股策略包含哪些方面?
量化问财
量化投资程序化炒股券商API算法人工智能python
前言量化交易是一种基于数学模型、统计分析和计算机算法的交易方式,通过系统化的方法筛选股票并进行投资决策。与传统交易依赖主观判断不同,量化交易强调数据驱动和模型优化,能够更高效地捕捉市场机会并控制风险。以下是量化交易通过算法模型选择股票的核心逻辑和方法。一、量化交易选股的核心逻辑量化交易选股的核心在于通过数学模型和算法,从海量数据中挖掘出具有潜在收益的股票。其逻辑主要基于以下几个方面:数据驱动的决策
- UnionLLM——通过统一接口调用国内外所有LLM的Python开源工具包
everfly
pythongithub
最近忙里偷闲和公司前端小伙伴一起撸了一个Python开源项目——UnionLLM。这是一个通过与OpenAI兼容的统一方式调用各种国内外各种大语言模型和Agent编排工具的轻量级开源工具包。我们开发它的起因是因为在实际项目中,经常需要调用多个大语言模型的API,但是国内每个大语言模型的接口和参数都不一样,这给我们的工作带来了很大的困扰和额外的成本。UnionLLM的目标是通过统一且容易扩展的方式连
- 扩散模型基本概念
AndrewHZ
深度学习新浪潮扩散模型计算机视觉流形学习生成式模型深度学习次深度学习人工智能
1.核心思想从最原始的DDPM来讲,扩散模型是用变分估计训练的马尔可夫链,相当于VAE+流模型。与标准化流相比,扩散模型的正向过程为预先定义的加噪过程,负责将图像x∼p(x)x\sim{p(x)}x∼
- 【Java 面试 八股文】Spring Cloud 篇
落啦啦
javajava面试springcloud
SpringCloud篇1.SpringCloud5大组件有哪些?2.服务注册和发现是什么意思?SpringCloud如何实现服务注册发现?3.我看你之前也用过nacos,你能说下nacos与eureka的区别?4.你们项目负载均衡如何实现的?5.Ribbon负载均衡策略有哪些?6.如果想自定义负载均衡策略如何实现?7.什么是服务雪崩,怎么解决这个问题?8.你们的微服务是怎么监控的?9.你们项目中
- 利用GPT开发应用005:Codex、Turbo、ChatGPT、GPT-4
翰墨之道
GPT开发GPT应用专栏GPT-1GPT-3GPT开发CodexTurboChatGPT
文章目录一、GPT-3Codex二、GPT-3.5Turbo二、ChatGPT三、GPT-4一、GPT-3Codex 2022年3月,OpenAI发布了GPT-3Codex的新版本。 这个新模型具有编辑和插入文本的能力。它们是通过截至2021年6月的数据进行训练的,并被描述为比之前版本更强大。到2022年11月底,OpenAI开始将这些模型称为GPT-3.5系列的一部分。 Codex系列模型
- 阿里云 人工智能与机器学习
HaoHao_010
阿里云云服务器云计算服务器
阿里云的人工智能(AI)与机器学习(ML)服务为企业提供了全面的AI解决方案,帮助用户在多个行业实现数据智能化,提升决策效率,推动业务创新。阿里云通过先进的技术和丰富的工具,支持用户开发、部署和管理AI应用。以下是阿里云在人工智能和机器学习方面的主要产品与服务:1.云上机器学习平台—PaaS服务PAI(PlatformforAI)PAI是阿里云推出的人工智能平台,提供一系列机器学习与深度学习工具和
- 【第三天】零基础学习量化基础代码分析-持续更新
Long_poem
学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录记录量化基础代码总览引言基本概念量化投资伪代码示例:量化投资模型框架总结每日-往期回看第一天零基础学量化基础知识点总览-持续更新第二天零基础学习量化基础代码总览-持续更新第三天零基础学习量化基础代码分析-持续更新记录量化基础代码总览引言量化投资是一种基于数学模型和计算机算法来制定投资策略的方法。通过分析历史数据,发现市场规律,
- 案例分析:大对象复用的目标和注意点15
是小旭啊
mybatisniodubbo
对于“大对象”的优化。这里的“大对象”,是一个泛化概念,它可能存放在JVM中,也可能正在网络上传输,也可能存在于数据库中。那么为什么大对象会影响我们的应用性能呢?第一,大对象占用的资源多,垃圾回收器要花一部分精力去对它进行回收;第二,大对象在不同的设备之间交换,会耗费网络流量,以及昂贵的I/O;第三,对大对象的解析和处理操作是耗时的,对象职责不聚焦,就会承担额外的性能开销。结合我们前面提到的缓存,
- AI探索笔记:浅谈人工智能算法分类
安意诚Matrix
机器学习笔记人工智能笔记
人工智能算法分类这是一张经典的图片,基本概况了人工智能算法的现状。这张图片通过三个同心圆展示了人工智能、机器学习和深度学习之间的包含关系,其中人工智能是最广泛的范畴,机器学习是其子集,专注于数据驱动的算法改进,而深度学习则是机器学习中利用多层神经网络进行学习的特定方法。但是随着时代的发展,这张图片表达得也不是太全面了。我更喜欢把人工智能算法做如下的分类:传统机器学习算法-线性回归、逻辑回归、支持向
- ASFF算法
神笔馬良
Python入门知识深度学习人工智能
1.特征金字塔的缺点:对于单发检测器,在不同尺度上的不一致。2.采用启发式引导的特征选择:大实例通常与上层特征映射相关联,小实例与下层特征映射相关联。3.解决的问题:如果一幅图像同时包含大小目标,则不同层次特征之间的冲突往往占据特征金字塔的主要部分。这种不一致性干扰了训练过程中的梯度计算,降低了特征金字塔的有效性。4.这个问题存在的原因:当一个对象在某一层特征图中被赋值并被视为正值时,其他层特征图
- CSS从入门到精通
cgblpx
前端开发全家桶-7天集训csshtmlcss3
文章目录CSS技术什么是CSSCSS的用法选择器标签名选择器class选择器id选择器分组选择器属性选择器盒子模型margin(外边距)border(边框)padding(内边距)元素类型的补充块级元素行内元素行内块元素永和门店系统用户注册练习CSS技术dy同名:cgblpx弹性布局:水平垂直都居中display:flex;justify-content:center;align-items:ce
- YOLOv11改进 | 检测头改进篇 | 利用ASFF改进YOLOv11检测头,自适应空间特征融合模块,在所有的目标检测上均有大幅度的涨点效果
Ai缝合怪YOLO涨点改进
YOLO目标检测计算机视觉深度学习YOLOv11YOLOv8YOLOv10
YOLOv8v10v11专栏限时199元订阅链接:限时199元去b站关注:AI缝合怪订阅YOLOv8v10v11创新改进高效涨点+持续改进500多篇(订阅的小伙伴,终身免费享有后续YOLOv12或是其他版本的改进专栏)目录一、ASFF模块介绍ASFF网络结构图:ASFF的创新点主要包括:作用原理优势二、核心代码三、手把手教你添加v11Detect_ASFFHead检测头模块1.首先在ultraly
- 【Linux基础】Linux下的C编程指南
Nebula嵌入式
#Linux基础linux嵌入式
目录一、前言二、Vim的使用2.1普通模式2.2插入模式2.3命令行模式2.4可视模式三、GCC编译器3.1预处理阶段3.2编译阶段3.3汇编阶段3.4链接阶段3.5静态库和动态库四、Gdb调试器五、总结一、前言在Linux环境下使用C语言进行编程是一项基础且重要的技能。本文将详细介绍在Linux下使用C语言编程的完整流程,包括代码编辑(使用vim)、编译(使用gcc)、调试(使用gdb)。对于大
- CSS—盒模型(3分钟结合示例精通盒模型)
海晨忆
Web知识点css前端盒模型
个人博客:haichenyi.com。感谢关注1.目录1–目录2–概念3–内容4–内边距5–边框6–外边距7–类型概念 在HTML中,每一个元素都可以看作一个矩形的盒子。如图 如上图所示,一个一个的矩形都可以堪称一个元素。矩形有大有小,边有粗有细,离HTML四周的边距有近有远。在HTML里面,一个盒子的大小,边的粗细,离四周的距离这都是盒模型的组成要素。 我们以边为分界线,把一个盒模型分为"
- ASFF改进YOLOv8检测头:提升目标检测精度与效率的创新方法【YOLOv8】
步入烟尘
YOLO系列创新涨点超专栏YOLO目标检测目标跟踪ASFFYOLOv8
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录ASFF改进YOLOv8检测头:提升目标检测精度与效率的创新方法【YOLOv8】1.背景介绍1.1Y
- HTML5期末大作业:基于 html css js仿腾讯课堂首页
web学生网页设计
web前端cssdreamweaverhtmlhtml5期末作业
精彩专栏推荐文末获取联系✍️作者简介:一个热爱把逻辑思维转变为代码的技术博主作者主页:【主页——获取更多优质源码】web前端期末大作业:【毕设项目精品实战案例(1000套)】程序员有趣的告白方式:【HTML七夕情人节表白网页制作(110套)】超炫酷的Echarts大屏可视化源码:【Echarts大屏展示大数据平台可视化(150套)】HTML+CSS+JS实例代码:【️HTML+CSS+JS实例代码
- 在 Ubuntu 22.04 上搭建 Dify 应用的完整指南
jdfklaakjsdf
AIGCubuntulinux运维
Dify是一款开源的AI应用开发平台,支持快速构建基于大语言模型(如GPT-3、ChatGLM等)的应用。本教程将详细演示如何在Ubuntu22.04系统上部署Dify。一、环境准备1.系统要求Ubuntu22.04LTS最低配置:2核CPU/4GB内存/20GB硬盘推荐配置:4核CPU/8GB内存/40GB硬盘2.更新系统sudoaptupdate&&sudoaptupgrade-ysudoap
- VQ-Diffusion 深度解析与实战指南
晏灵昀Odette
VQ-Diffusion深度解析与实战指南VQ-Diffusion项目地址:https://gitcode.com/gh_mirrors/vqd/VQ-Diffusion1.项目介绍VQ-Diffusion是一个用于文本到图像合成的深度学习模型,基于矢量量化变分自编码器(VQ-VAE)和去噪扩散概率模型(DenoisingDiffusionProbabilisticModel)。该模型通过将DDP
- 字节的豆包和Kimi 的优劣势对比
eso1983
javapython算法
字节豆包、Kimi(月之暗面)和深度求索(DeepSeek)三款AI助手的对比分析,涵盖核心技术、功能特性、优劣势及适用场景.1.核心能力对比维度豆包(字节跳动)Kimi(月之暗面)DeepSeek(深度求索)技术基础基于字节自研云雀大模型,多模态能力突出,依托抖音/头条数据生态。Moonshot自研长文本大模型,专注超长上下文理解。自研模型聚焦复杂逻辑推理与代码生成,垂直领域优化。长文本处理支持
- Unity3D 实现骨骼动画的 GPU Skinning 详解
Thomas_YXQ
nginx运维游戏开发Unity3D3d架构ui
引言在游戏开发中,骨骼动画是一种常见的动画技术,它通过骨骼的变换来驱动模型的顶点变化,从而实现角色的动画效果。传统的骨骼动画通常在CPU上进行计算,但随着硬件的发展,GPU的计算能力越来越强,GPUSkinning技术逐渐成为优化骨骼动画性能的重要手段。本文将详细介绍如何在Unity3D中实现GPUSkinning,并提供相关的代码实现。对惹,这里有一个游戏开发交流小组,希望大家可以点击进来一起交
- 手把手教你用Docker部署Dify平台,打造可视化LLM应用环境
脱泥不tony
自然语言处理AI大模型LLM人工智能大语言模型语言模型Dify
“Dify是一款开源的大语言模型(LLM)应用开发平台。它融合了后端即服务(BackendasService)和LLMOps的理念,使开发者可以快速搭建生产级的生成式AI应用。即使你是非技术人员,也能参与到AI应用的定义和数据运营过程中。Dify内置了构建LLM应用所需的关键技术栈,包括对数百个模型的支持、直观的Prompt编排界面、高质量的RAG引擎、稳健的Agent框架、灵活的流程编排,并同时
- ARIMA模型
dearr__
时间序列统计学知识笔记
【终于弄明白ARIMA模型啦!包括确定pq值详细解释!!-哔哩哔哩】https://b23.tv/ijLD8UWARIMA模型ACF&PACFAIC&BICARIMA介绍ACF&PACF怎么判断是拖尾还是截尾截尾:就挺突然的95%二倍标准差以内拖尾:就慢慢的5%二倍标准差以外例子:eg详解:Step1看ACF图:-ACF截尾:判断为MA(q)横型,q为最后一个超出2倍标准差(蓝线)的阶数,即超出水
- 【Python爬虫(67)】Python爬虫实战:探秘旅游网站数据宝藏
奔跑吧邓邓子
Python爬虫python爬虫开发语言旅游网站
【Python爬虫】专栏简介:本专栏是Python爬虫领域的集大成之作,共100章节。从Python基础语法、爬虫入门知识讲起,深入探讨反爬虫、多线程、分布式等进阶技术。以大量实例为支撑,覆盖网页、图片、音频等各类数据爬取,还涉及数据处理与分析。无论是新手小白还是进阶开发者,都能从中汲取知识,助力掌握爬虫核心技能,开拓技术视野。目录一、引言二、爬虫前期准备2.1目标网站分析2.2技术栈选择2.3环
- 【Python爬虫(81)】当量子计算邂逅Python爬虫:一场技术变革的预演
奔跑吧邓邓子
Python爬虫量子计算python爬虫开发语言
【Python爬虫】专栏简介:本专栏是Python爬虫领域的集大成之作,共100章节。从Python基础语法、爬虫入门知识讲起,深入探讨反爬虫、多线程、分布式等进阶技术。以大量实例为支撑,覆盖网页、图片、音频等各类数据爬取,还涉及数据处理与分析。无论是新手小白还是进阶开发者,都能从中汲取知识,助力掌握爬虫核心技能,开拓技术视野。目录一、量子计算:崭露头角的技术新星1.1量子计算的基本原理1.2发展
- 在Ubuntu系统上部署Dify(开源大语言模型应用开发平台)
[shenhonglei]
deepseekubuntu开源语言模型人工智能
在Ubuntu系统上部署Dify(开源大语言模型应用开发平台)环境准备Dify部署接入本地模型(如Ollama)安装Ollama运行模型并接入Dify环境准备系统要求Ubuntu20.04/22.04,建议CPU≥2核,内存≥4GB。安装Docker及DockerCompose:#安装Dockersudoaptupdatesudoaptinstallapt-transport-httpsca-ce
- 31.C++多态4(静态多态,动态多态,虚函数表的存储位置)
橘子真甜~
c++开发语言
⭐上篇文章:30.C++多态3(多态的原理,虚指针,虚函数表,抽象类)-CSDN博客⭐本篇代码:c++学习/17.C++三大特性-多态·橘子真甜/c++-learning-of-yzc-码云-开源中国(gitee.com)⭐标⭐是比较重要的部分目录一.静态多态与动态多态二.派生类的虚表的内存分布2.1单继承派生类虚表的分布2.2多继承下派生类虚表的分布一.静态多态与动态多态静态多态是在编译的时候就
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- AI笔记——浅谈发展历程
Bqiuer
AIAI笔记人工智能ai
2023年,要说最让人震惊的热点,无疑就是AI技术的大爆发!从1950年的“图灵测试”标志着人工智能雏形的诞生,一些最顶尖的技术团队、技术学科进行研究,到如今几十年的时间。一、AI的历史进程人工智能(ArtificialIntelligence,AI)的历史进程可以追溯到上世纪50年代。1950年代-1960年代:起步阶段1950年,英国数学家艾伦·图灵提出了“图灵测试”,这是第一个旨在检验机器智
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号