- PennyLane: 探索量子计算的新里程
戴艺音
PennyLane:探索量子计算的新里程项目地址:https://gitcode.com/gh_mirrors/pe/pennylane项目简介是一个开源软件框架,专注于混合量子和经典计算。由PennyLaneAI团队开发,该项目提供了一个直观且灵活的方式来设计、训练和优化涉及量子硬件的机器学习模型。其目标是让研究人员和开发者能够轻松地在本地或云端的量子计算机上进行实验。技术分析PennyLane
- 软件工程概论试题三
minaMoonGirl
软件工程
一、单选1.需求确认主要检査五个方面的内容,其中那一项是为了保证文档中的需求不互相冲突(即不应该有相互矛盾的约束或者对同一个系统功能有不同的描述)。A.现实性B.可验证性C.一致性D.正确性E.完整性正答:C2.下列开发方法中,()不属于敏捷开发方法,A.自适应软件开发B.螺旋模型C.水晶方法D.极限编程正答:B3.下列关于敏捷方法的叙述,错误的是()。A.敏捷方法强调小版本发布B.敏捷方法强调可
- MySQL系列之(一)---MySQL使用方法总结(不断更新)
Frodo先生
MySQL不断更新系列
MySQL的使用方法总结在这里先标注上个人认为其他朋友总结的最好的MySQL的学习笔记:这个网站是一大佬博客,名字叫格物,特别值得学习,还有资料可以学习一千行MySQL学习笔记MySQL复习笔记(实例全)1.数据库的介绍数据库就是存储和管理数据的仓库,数据按照一定的格式进行存储,用户可以对数据库中的数据进行增加、修改、删除、查询等操作。2.数据库的分类关系型数据库非关系型数据库关系型数据库:是指采
- Deepseek两项关键发现:无需人类专家介入SFT、有自己
极道Jdon
javascriptreactjs
DeepseekR1-Zero关键两项发现:无需人类专家、有自己专业领域语言DSL,也就是没有SFT,有自己DSL!ARCPrize基金会对DeepSeek发布的R1-Zero和R1“推理”系统的分析。ARCPrize基金是谁?ARCPrize基金会旨在定义、衡量并激励新的AGI(通用人工智能)想法。目前尚未实现AGI,主流AI行业和公众普遍认为通过扩大纯语言模型(LLM)的预训练规模就能实现突破
- DeepSeek极端榨取硬件性能被曝光
极道Jdon
javascriptreactjs
DeepSeek的出现是否意味着前沿LLM开发不再需要大规模GPU集群?简单来说:不是的。虽然DeepSeek的V3模型通过一些非常厉害的优化技术,让GPU的使用效率变得更高了,但这并不意味着像Google、OpenAI、Meta和xAI这些公司之前花大钱搞的大规模GPU集群就没用了。AI开发者的普遍看法是,大规模GPU集群仍然是训练顶尖AI模型的关键。DeepSeek做了什么?DeepSeek的
- 杨立昆退休?中国Deepseek超Llama 4触发Meta
极道Jdon
javascriptreactjs
[昨天,人工智能领域发生了一些事情:杨立昆领导的Meta生成式人工智能部门(Metagenaiorg)陷入了恐慌模式。杨立昆是Meta(原Facebook)的首席人工智能科学家,同时也是纽约大学的教授。杨立昆因其在深度学习领域的开创性工作而获得了图灵奖(TuringAward),这是计算机科学领域的最高荣誉之一。恐慌模式始于DeepseekV3,它在性能测试中已经超过了Llama4。更让人尴尬的是
- 设计模式概述-24种设计模式和七大设计原则
SongYuxinZzz
Java基础java
六大设计原则1、开闭原则(OpenClosePrinciple)定义:一个软件实体如类、模块和函数应该对扩展开放,对修改关闭。问题由来:在软件的生命周期内,因为变化、升级和维护等原因需要对软件原有代码进行修改时,可能会给旧代码中引入错误,也可能会使我们不得不对整个功能进行重构,并且需要原有代码经过重新测试。解决方案:当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来
- Ubuntu上如何优雅下载huggingface上某个gguf模型文件
晨欣
ubuntulinux运维
OS:Ubuntu22.04LTS需求:下载GorillaOpenfunctionsV2Q2GGUF模型到本地https://huggingface.co/gorilla-llm/gorilla-openfunctions-v2-gguf/blob/main/gorilla-openfunctions-v2-q2_K.gguf方法:使用wget命令wgethttps://huggingface.c
- GGUF 大模型文件格式
香菜烤面包
AI系统与算法部署语言模型
1.基础原理GGUF简介当前的大模型的参数规模较大,数以千亿的参数导致了它们的预训练结果文件都在几十GB甚至是几百GB,这不仅导致其使用成本很高,在不同平台进行交换也非常困难。因此,大模型预训练结果文件的保存格式对于模型的使用和生态的发展来说极其重要。大语言模型的开发通常使用PyTorch等框架,其预训练结果通常也会保存为相应的二进制格式,如pt后缀的文件通常就是PyTorch框架保存的二进制预训
- ollama把huggingface下载下来的模型转换为gguf
abments
人工智能语言模型
说明ollama导入从huggingface下载下来的模型在ollama的说明文档中有详细的介绍,大家可以按照文档说明进行操作。importing-pytorch–safetensors。既然官方已经给出了明确的操作步骤,那么我写这篇博客的意义又是什么呢?主要有两个目的:1.我的操作可能更适合中国宝宝体质2.方便后期自己查看要求建议使用conda管理python环境建议使用linux或mac环境,
- 万字长文解读生成式AI参考架构
俞凡 DeepNoMind
程序人生
本文介绍了构建端到端生产级GenAI应用的参考架构模型,涵盖了从UI/UX设计到多代理系统的各个方面,涉及AI模型的准备、调优、服务以及治理等关键环节。原文:TheGenAIReferenceArchitecture本文将介绍构建端到端GenAI应用的主要架构构件和蓝图,以便为生产做好准备,并且提出了几个在实施和设计基于LLM的应用时需要注意的关键事项。在目标架构中选择GenAI组件的AI成熟度:
- 论文笔记(七十)DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning(二)
墨绿色的摆渡人
文章论文阅读
DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning(二)文章概括摘要:2.方法2.3.DeepSeek-R1:冷启动强化学习2.3.1.冷启动2.3.2.面向推理的强化学习2.3.3.拒绝采样与监督微调2.3.4.面向所有场景的强化学习2.4.蒸馏:赋予小模型推理能力文章概括引用:@article{g
- pytorch小记(七):pytorch中的保存/加载模型操作
墨绿色的摆渡人
pythonpytorch小记pytorch人工智能python
pytorch小记(七):pytorch中的保存/加载模型操作1.加载模型参数(`state_dict`)1.1保存模型参数1.2加载模型参数1.3常见变种1.3.1指定加载设备1.3.2非严格加载(跳过部分层)1.3.3打印加载的参数2.加载整个模型2.1保存整个模型2.2加载整个模型2.3注意事项3.总结4.加载模型的完整代码示例4.1保存和加载参数4.2保存和加载整个模型4.3加载到不同设备
- 书生浦语第五期
晴斋1216
语言模型
基础作业完成以下任务,并将实现过程记录截图:配置lmdeploy运行环境下载internlm-chat-1.8b模型以命令行方式与模型对话视频链接文档链接基础知识学习模型部署在软件工程中,部署通常指的是将开发完毕的软件投入使用的过程。在人工智能领域,模型部署是实现深度学习算法落地应用的关键步骤。简单来说,模型部署就是将训练好的深度学习模型在特定环境中运行的过程。目前大模型部署面临的挑战计算量巨大内
- LLM模型部署经验分享
lewis_kai
阿里云语言模型
LLM模型部署经验分享作者:大连理工大学李凯首先,你需要选择一个合适的部署平台,这可以是本地服务器、云服务提供商(如AWS、Azure、GoogleCloud等)、边缘设备或者特定的部署服务(如HuggingFaceHub)。在这里我使用的是魔搭平台的云服务器。然后下载你要部署的模型,这里下载的是通义千问。下载并部署玩模型后,我们还可以对模型转换和优化,该文会介绍基于OpenVINO的模型量化实践
- 开源大模型(LLM)下载
baidu_20834545
语言模型
由于huggingface等国外网址无法访问或限制等问题,下载不了或下载速度慢。可以尝试从modespace(魔搭社区)下载。1、找到对应的模型文件,比如Meta-Llama-3-8B,然后找到下载入口2、点击模型下载,有2种下载方式,这里我们通过git下载(注意由于模型文件一般都比较大,直接使用gitclone下载时会有问题,超大文件下载后数据会缺失。可通过gitlfsclone命令)3、打开l
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- vscode和pycharm对比
hack(卧龙)
vscodepycharmide
现在vscode和pycharm两个编辑器到底哪个好其实这两个的话各有所长vscode这个比较轻量化,启动快速,插件丰富,基本所以神级插件都有,但是调试比较麻烦对于小白来说有一定的难度但这个用起来是非常舒服的pycharm挺重的,有点大但是更专业,插件没那么多,但很多功能都自带,专业版要付费
- 数据结构【时间复杂度、空间复杂度--1】
北方留意尘
数据结构c语言后端数据结构算法
目录数据结构前言1.算法的复杂度2.时间复杂度2.1时间复杂度的概念2.2大O的渐进表示法2.3时间复杂度存在最好、平均和最坏情况2.4常见时间复杂度计算举例3.空间复杂度注意:时间累积(一去不复返),空间不累计(可重复利用)4.常见时间复杂度以及复杂度oj练习数据结构前言什么是数据结构?数据结构(DataStructure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素
- Python从0到100(四十九):数据库设计及Django ORM使用
是Dream呀
python数据库django
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 【deepseek】本地部署DeepSeek R1模型:使用Ollama打造个人AI助手
大表哥汽车人
人工智能大语言模型学习笔记人工智能deepseek
一、简介DeepSeekR1是一个强大的开源语言模型,通过Ollama可以轻松实现本地部署。本文将详细介绍如何在本地部署和使用DeepSeekR1模型,并结合PageAssist插件实现更便捷的AI交互体验。二、环境准备硬件要求GPU显存要求:7B模型:8-12GB显存14B模型:12GB以上显存32B模型:建议16GB以上显存建议使用NVIDIA显卡SSD硬盘空间:建议预留50GB以上软件要求安
- 《大规模分布式存储系统:原理解析与架构实战》读书笔记
weixin_36908057
存储存储系统
《大规模分布式存储系统:原理解析与架构实战》读书笔记1、事务满足ACID特性2、单机存储引擎:哈希存储引擎和B树存储引擎和LSM存储引擎。存储系统的数据模型:文件模型、关系模型和键值模型。3、分布式系统:数据分布、复制、一致性、容错。数据分布的方式:哈希分布和顺序分布。将数据分散到多台机器之后,需要保证多台机器之间的负载均衡。衡量负载涉及的因素有很多,如cpu,内存。负载均衡需要执行数据迁移操作。
- Deepseek又开源了颠覆性的新模型Janus-Pro
AI生成曾小健
人工智能
Deepseek又开源了颠覆性的新模型Janus-ProDeepseek真的是一点都不休息啊,除夕还发模型刚刚推出并开源了Janus-Pro,作为之前Janus的全面升级版,这次它不仅参数从1B扩展到7B而且在多模态理解与生成能力上实现飞跃,还大幅提升了图像生成的稳定性和细节表现!先介绍一下Janus架构☝️Janus是为了解决多模态AI领域的一个根本性矛盾:“理解”与“生成”任务对视觉表征的需求
- 大规模分布式存储系统:原理解析与架构实战
克终
杂文
《大规模分布式存储系统:原理解析与架构实战》是分布式系统领域的经典著作,由阿里巴巴高级技术专家“阿里日照”(OceanBase核心开发人员)撰写,阳振坤、章文嵩、杨卫华、汪源、余锋(褚霸)、赖春波等来自阿里、新浪、网易和百度的资深技术专家联袂推荐。理论方面,不仅讲解了大规模分布式存储系统的核心技术和基本原理,而且对谷歌、亚马逊、微软和阿里巴巴等国际型大互联网公司的大规模分布式存储系统进行了分析;实
- DeepSeek-Coder-V2:引领代码智能的新篇章
雷颖忱Fergal
DeepSeek-Coder-V2:引领代码智能的新篇章DeepSeek-Coder-V2-Instruct项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/DeepSeek-Coder-V2-Instruct在当今快速发展的技术领域,持续关注模型的最新发展和趋势显得尤为重要。本文旨在探讨DeepSeek-Coder-V2这一开源代码语言模型的最新进展,
- 2024年大模型发展回顾与展望(上)
Alsey_
大模型发展回顾与展望人工智能
不觉间,ChatGPT已经诞生两年了。两年前,当大模型仍是一个相对陌生的概念,难以想象,今天它已经成为办公必备工具,席卷了各个行业,深刻改变着我们的工作方式。OpenAI引领大模型发展大模型的崛起可以追溯到几年前,最初的突破源自参数规模的增长。2018年,OpenAI发布了GPT-1,这款模型的参数量虽然只有1.17亿,但为后续的大模型奠定了基础。随着技术的进步,2019年OpenAI发布了GPT
- DeepSeek-V3模型:软件测试智能化的新篇章与挑战
霍格沃兹测试开发学社测试人社区
测试开发软件测试人工智能
在这个技术日新月异的时代,人工智能(AI)的每一次革新都在悄然改变着我们的生活和工作方式。最近,DeepSeekAI公司推出的DeepSeek-V3模型,凭借其卓越的文本处理能力、高效的推理速度以及多任务处理能力,为软件测试行业带来了一场前所未有的智能化变革。今天,我们就来深入探讨一下DeepSeek-V3在软件测试中的应用以及它所面临的挑战。智能化测试的新篇章DeepSeek-V3模型在软件测试
- 微服务架构设计基础之立方体模型
weixin_34349320
后端前端系统架构ViewUI
背景对于现在的微服务架构的应用来说,对大量并发的及时响应是一项制胜能力。据用户行为分析平台统计,随行付的某一款APP产品每日请求就达到上千万次用户请求、加解密服务3000万次/日等等。这些微服务每时每刻在处理如此高强度的请求,对数据层的应对能力要求极高。如果我们把对速度的需求放在复杂的分布式数据架构背景下,是很难想象如何让应用应对如此巨大的数据访问量的。但很幸运,我们有方法做到。即立方体模型。立方
- 自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
辞落山
scikit-learn线性回归python
1.引言简要介绍线性回归模型及其在机器学习中的应用。2.创建自定义数据集通过生成一个简单的自定义数据集来模拟问题。可以使用numpy生成数据。importnumpyasnpimportmatplotlib.pyplotasplt#生成自定义数据np.random.seed(42)X=2*np.random.rand(100,1)y=4+3*X+np.random.randn(100,1)3.使用s
- TensorFlow 简介
九月十九
tensorflow人工智能python
TensorFlow是一个开源的机器学习框架,由Google开发。它提供了一个强大的工具集,用于构建和训练各种机器学习模型。TensorFlow的基本概念和使用场景包括:1.张量(Tensor):TensorFlow中的核心数据结构是张量,它是一个多维数组,可以表示标量、向量、矩阵等。2.计算图(Graph):TensorFlow使用计算图来表示机器学习模型的计算过程。计算图由一系列的操作节点和数
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST