- 《DeepSeek-R1 问世,智能搜索领域迎来新变革》
黑金IT
智能搜索
DeepSeek-R1是由DeepSeek公司开发的一款创新型人工智能模型,自2024年5月7日发布以来,迅速在AI领域引起广泛关注。该模型凭借其卓越的语言理解能力、高效的数据处理能力、自适应学习能力、高安全性与可靠性以及广泛的应用场景与拓展性,在众多人工智能模型中脱颖而出。DeepSeek-R1的核心特点强大的语言理解能力:DeepSeek-R1采用先进的深度学习算法,能够精准解析复杂的语义结构
- SpringBoot+Vue.js协同过滤算法美食推荐小程序
wqq_992250277
javajava
摘要伴随着我国社会的发展,人民生活质量日益提高。于是对各种需求进行规范而严格是十分有必要的,所以许许多多的微信小程序应运而生。此时单靠人力应对这些事务就显得有些力不从心了。所以本论文将设计一套协同过滤算法美食推荐小程序,帮助美食推荐进行美食分类、美食信息、订单信息等繁琐又重复的工作,提高工作效率的同时,也减轻了管理者的压力。本论文的主要内容包括:第一,研究分析当下主流的Uni-weixin技术,结
- Qt事件处理:理解处理器、过滤器与事件系统
行十万里人生
Qtqt开发语言华为harmonyos华为云华为odgit
1.事件事件是一个描述应用程序中、发生的某些事情的对象。在Qt中,所有事件都继承自QEvent,并且每个事件都有特定的标识符,如:Qt::MouseButtonPress代表鼠标按下事件。每个事件对象包含该事件的所有相关信息,如:鼠标事件包含鼠标的坐标、按下的按钮等信息。2.事件处理器事件处理器是用于处理特定类型事件的成员函数,通常以event结尾,如:mousePressEvent、enterE
- 智能小区物业管理系统推动数字化转型与提升用户居住体验
快鲸数字街道系统
其他
内容概要在当今快速发展的社会中,智能小区物业管理系统的出现正在改变传统的物业管理方式。这种系统不仅仅是一种工具,更是一种推动数字化转型的重要力量。它通过高效的技术手段,将物业管理与用户居住体验紧密结合,无疑为社区带来了诸多益处。采用智能小区物业管理系统,让我们一起迈入智能生活的新纪元!首先,智能小区物业管理系统通过可视化数据管理,使得所有物业运营信息一目了然。这不仅提高了决策的科学性,还提升了运营
- Haskell语言的安全开发
慕璃嫣
包罗万象golang开发语言后端
Haskell语言的安全开发引言在现代软件开发中,安全性已经成为一个不可忽视的重要方面。一方面,随着信息技术的发展,各类网络攻击和安全漏洞层出不穷;另一方面,越来越多的项目要求遵循高安全标准,以保护用户的隐私和数据。在众多编程语言中,Haskell凭借其强大的类型系统和函数式编程模型,提供了许多内置特性来帮助开发者编写安全的代码。本文将深入探讨Haskell语言的安全开发方法,包含其特性、最佳实践
- JSON数据交互和RESTful支持
@syl
JSON/RESTfuljsonrestful
JSON数据和RESTfulJSON数据交互概述JSON结构JSON数据转换Jackson开源包案例——JSON数据的使用RESTful支持RESTful应用案例——用户信息查询JSON数据交互概述JSON与XML非常相似,都是用于存储数据的。但JSON相对于XML来说,解析速度更快,占用空间更小。JSON结构对象结构以"{“开始,以”}“结束。中间包含多个数据,name:value形式的,多个数
- 「分块」数列分块入门1 – 9 by hzwer 解题记录
GA_PK
出处学习蓝书的时候感觉书上关于分块的题目太少了.而且都是难度较大的一些分块题目,想巩固一下分块方面的知识,就找到了hzwer大佬的分块入门知识介绍.用这篇博客记录一下.从树状数组到线段树再到分块.都是对区间信息的快速处理来达到想要的效果.树状数组效率最优,可是拓展性实在不高.线段树效率稍微差一点但是拓展性较好,可是在信息不满足区间可加性的情况下代码难度会高很多.而分块效率上最差但是可以接受,且拓展
- Makefile中的-Wall -O2 -Os -g等选项介绍
大捞子
LinuxMakefile-Wall-O2-Os-g等选项介CFLAGSLDFLAGSLIBS
-Wall:选项可以打印出编译时所有的错误或者警告信息。这个选项很容易被遗忘,编译的时候,没有错误或者警告提示,以为自己的程序很完美,其实,里面有可能隐藏着许多陷阱。变量没有初始化,类型不匹配,或者类型转换错误等警告提示需要重点注意,错误就隐藏在这些代码里面。没有使用的变量也需要注意,去掉无用的代码,让整个程序显得干净一点。下次写Makefile的时候,一定加-Wall编译选项。-O0:表示编译时
- DeepSeek R1:AI领域的新标杆
XianxinMao
人工智能
标题:DeepSeekR1:AI领域的新标杆文章信息摘要:DeepSeek的R1模型在性能上与OpenAI的o1模型相当,甚至在某些方面更具优势,尤其在成本控制上表现出色。R1模型通过开源策略展示了其在AI领域的开放态度,推动了技术的广泛发展。此外,R1-Zero模型通过强化学习和测试时计算实现了强大的推理能力,无需监督微调数据,标志着中国在AI领域的快速崛起,挑战美国的主导地位。AI模型在推理能
- 《Semantic communications - Principles and challenges》语义通信文献阅读与分析总结
snow每天都要好好学习
深度学习深度学习
《语义通信:原理与挑战》文献详细总结1.语义通信的概念语义通信是一种超越传统香农通信范式的全新通信模式,它关注的是信息意义的传递,而不仅仅是数据本身的准确传输。传统通信强调比特级别的准确性,而语义通信更强调信息对接收方执行特定任务的有效性。这种模式被认为是第六代(6G)无线网络的核心技术之一,能够支持包括智能交通、智能监控、视频会议、增强现实(AR)和虚拟现实(VR)在内的多种智能应用。在语义通信
- 【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.25 视觉风暴:NumPy驱动数据可视化
精通代码大仙
numpypythonnumpypython信息可视化
1.25视觉风暴:NumPy驱动数据可视化目录视觉风暴:NumPy驱动数据可视化百万级点云实时渲染优化CT医学影像三维重建实战交互式数据分析看板开发地理空间数据可视化进阶WebAssembly前端渲染融合1.25.1百万级点云实时渲染优化1.25.2CT医学影像三维重建实战1.25.3交互式数据分析看板开发1.25.4地理空间数据可视化进阶1.25.5WebAssembly前端渲染融合视觉风暴:N
- Python 爬虫实战:在马蜂窝抓取旅游攻略,打造个性化出行指南
西攻城狮北
python爬虫旅游开发语言实战案例
一、引言二、准备工作(一)安装必要的库(二)分析网页结构三、抓取攻略列表信息(一)发送请求获取网页内容(二)解析网页提取攻略信息(三)整合代码获取攻略列表四、抓取单个攻略详情信息(一)发送请求获取攻略详情页面内容(二)解析网页提取攻略详情信息(三)整合代码获取攻略详情五、数据存储(一)存储到CSV文件(二)存储到数据库(以SQLite为例)六、注意事项(一)遵守法律法规和平台规定(二)应对反爬虫机
- mac 怎么查看CPU核数
serve the people
日常琐问macos
在macOS系统中,可以通过以下几种方法查看CPU核心数:1.使用“关于本机”查看点击左上角的苹果图标()。选择“关于本机”。在弹出的窗口中,系统会显示Mac的基本信息,包括CPU的类型和核心数。比如“2.6GHz6核IntelCorei7”。2.通过“系统报告”查看打开“关于本机”窗口。点击窗口下方的“系统报告”按钮。在“硬件概览”中,找到“总线速度”和“内存”旁边的“处理器名称”和“核心数”
- 深度解读大语言模型中的Transformer架构
老三不说话、
transformer
一、Transformer的诞生背景传统的循环神经网络(RNN)和长短期记忆网络(LSTM)在处理自然语言时存在诸多局限性。RNN由于其递归的结构,在处理长序列时容易出现梯度消失和梯度爆炸的问题。这导致模型难以捕捉长距离的依赖关系,对于复杂的自然语言文本,无法有效地学习到上下文的关键信息。LSTM虽然在一定程度上缓解了梯度消失的问题,但依然存在梯度不稳定的情况。而且,RNN和LSTM在计算过程中,
- 构建高效LLM应用开发架构的关键策略
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题:构建高效LLM应用开发架构的关键策略在当今快速发展的技术世界中,人工智能(AI)已经成为推动创新的核心动力。其中,大型语言模型(LLM)的应用开发尤为引人注目。LLM通过处理和理解自然语言,为各种场景提供了强大的智能解决方案,从智能客服到内容生成,再到教育应用,都有着广泛的应用前景。然而,高效地构建LLM应用开发架构面临着诸多挑战,包括性能、可扩展性和安全性等。本文将深入探讨构建高效LL
- 爬虫守则--写爬虫,不犯法
Erfec
玩爬虫,技术当然是中立的,浏览了因为爬虫被捕入狱的案例,自己总结了如下爬虫守则,不吃牢饭!1、爬虫速度不要太快,不要给对方服务器造成太大压力2、爬虫不要伪造VIP,绕过对方身份验证,你可以真的买一个VIP做自动化,这没问题3、公民个人信息不要去碰4、爬取的数据不能用于盈利5、爬虫是模拟人,不要做人不能做到的事情
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- YOLOv10改进策略【卷积层】| ICCV-2023 LSK大核选择模块 包含二次独家创新
Limiiiing
YOLOv10改进专栏YOLO目标检测计算机视觉深度学习
一、本文介绍本文记录的是利用大核选择模块LSK优化YOLOv10的目标检测网络模型。在大尺寸图像中的小目标检测任务中,一直是个难题,无法仅基于外观实现较好的识别,因此需要广泛的上下文信息进行辅助。但不同物体所需的上下文信息范围不同,为了更好地对这些特性进行建模,本文利用大核选择模块二次创新C3k2,使模型能够产生具有各种大感受野的多个特征的同时,动态地根据输入调整模型的行为,使网络更好地适应图像中
- AI大模型在智能客服系统中的应用
季风泯灭的季节
AI大模型应用技术二人工智能
目录引言1.基于大模型的智能客服系统架构2.对话生成与上下文管理对话生成上下文管理3.提高客服系统响应精度的策略1.使用专门训练的数据集2.引入实体识别和意图分类3.反馈循环和持续优化4.AI大模型在企业中的优化与调优策略1.模型微调(Fine-tuning)2.模型蒸馏(ModelDistillation)3.响应延迟优化4.持续监控与反馈结论引言随着人工智能(AI)技术的不断发展,AI大模型在
- 初学可视化PyQt5系列--主要类
万金油笑匠
PyQt5小白学做四旋翼无人机Python数据分析与可视化qt开发语言pythonuipyqt
【初学可视化PyQt5系列】第1章PyQt5简介第2章PyQt5新增功能第3章Hellomyfourrotordrone第4章PyQt5主要类第5章PyQt5使用Qt设计器第6章PyQt5信号与插槽第7章PyQt5布局与管理第8章PyQt5基本小部件第9章PyQt5QDialog类第10章PyQt5QMessageBox类第11章PyQt5多文档界面第12章PyQt5拖放第13章PyQt5数据库处
- 深度学习(DL/ML)学习路径
jackl的科研日常
深度学习学习人工智能
最近几年,尤其是自从2016年AlphaGo打败李世石事件后,人工智能技术受到了各行业极大关注。其中以机器学习技术中深度学习最受瞩目。主要原因是这些技术在科研领域和工业界的应用效果非常好,大幅提升了算法效率、降低了成本。因而市场对相关技术有了如此大的需求。我在思考传统行业与这些新兴技术结合并转型的过程中,亦系统的回顾了深度学习及其相关技术。本文正是我在学习过程中所作的总结。我将按照我所理解的学习路
- 【单细胞-第三节 多样本数据分析】
遗落凡尘的萤火-生信小白
单细胞分析数据分析数据挖掘
文件在单细胞\5_GC_py\1_single_cell\1.GSE183904.RmdGSE183904数据原文1.获取临床信息筛选样本可以参考临床信息rm(list=ls())library(tinyarray)a=geo_download("GSE183904")$pdhead(a)table(a$Characteristics_ch1)#统计各样本有多少2.批量读取学会如何读取特定的样本i
- hive表指定分区字段搜索_Hive学习-Hive基本操作(建库、建表、分区表、写数据)...
weixin_39710660
hive表指定分区字段搜索
hive简单认识Hive是建立在HDFS之上的数据仓库,所以Hive的数据全部存储在HDFS上。Hive的数据分为两部分,一部分是存在HDFS上的具体数据,一部分是描述这些具体数据的元数据信息,一般Hive的元数据存在MySQL上。Hive是类SQL语法的数据查询、计算、分析工具,执行引擎默认的是MapReduce,可以设置为Spark、Tez。Hive分内部表和外部表,外部表在建表的同时指定一个
- Transformer模型结构分析:Encoder、Decoder以及注意力机制详解
AI天才研究院
Python实战大数据AI人工智能自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介Transformer模型由论文[1]提出,其基本思想是使用注意力机制代替循环神经网络(RNN)或卷积神经网络(CNN),是一种基于序列到序列(Seq2seq)的机器翻译、文本摘要、对话系统等任务的成功范例。Transformer模型使用全连接层代替RNN和CNN的门控结构,并用多头注意力机制进行了改进,能够在捕捉全局上下文信息的同时,还保持输入输出序列之间的独
- StarRocks常用命令
sunny05296
数据库数据库
目录1、StarRocks集群管理&配置命令2、StarRocks常用操作命令3、StarRocks数据导入和导出1、StarRocks集群管理&配置命令查询FE节点信息SHOWfrontends;SHOWPROC'/frontends';mysql-h192.168.1.250-P9030-uroot-p-e"SHOWPROC'/dbs';"查询BE节点信息SHOWbackends;SHOWPR
- ElasticSearch第十六讲 ES 索引模板Index Template与Dynamic Template
程序员路同学
ElasticSearchelasticsearchjava大数据
IndexTemplateIndexTemplates可以帮助你设定Mappings和Settings,并按照一定的规则,自动匹配到新创建的索引之上。模版仅在一个索引被新创建时,才会产生作用。修改模版不会影响已创建的索引,你可以设定多个索引模版,这些设置会被“merge”在一起,你可以指定“order”的数值,控制“merging”的过程索引模板中的内容settings:指定index的配置信息,
- jenkins的pipline(碎碎念)
Junzizhiai
Jenkinsjenkins
流水线语法本节是建立在流水线入门内容的基础上,而且,应当被当作一个参考。对于在实际示例中如何使用流水线语法的更多信息,请参阅本章在流水线插件的2.5版本中的使用Jenkinsfile部分,流水线支持两种离散的语法,具体如下对于每种的优缺点,参见语法比较。正如本章开始讨论的,流水线最基础的部分是“步骤”。基本上,步骤告诉Jenkins要做什么,以及作为声明式和脚本化流水线语法的基本构建块。对于可用步
- Python 爬虫实战案例 - 获取拉勾网招聘职位信息
西攻城狮北
python爬虫拉勾网招聘信息
引言拉勾网,作为互联网招聘领域的佼佼者,汇聚了海量且多样的职位招聘信息。这些信息涵盖了从新兴科技领域到传统行业转型所需的各类岗位,无论是初出茅庐的应届生,还是经验丰富的职场老手,都能在其中探寻到机遇。对于求职者而言,能够快速、全面地掌握招聘职位的详细情况,如薪资待遇的高低、工作地点的便利性、职位描述所要求的技能与职责等,无疑能在求职路上抢占先机。而企业方,通过分析同行业职位信息的发布趋势、薪资水平
- 【转载】通过 GetMessageExtraInfo 方法判断当前收到的鼠标消息是否来自触控板和 Pen
涟幽516
windowsmicrosoft
大家都知道,在不开启WM_Pointer的情况下,无论是走WM_Touch或者是RealTimeStylus等方式,默认下触摸都会提升为鼠标消息从而更好兼容应用程序的逻辑如果此时应用程序想要根据消息循环里面接收到的Win32消息判断一个鼠标消息的来源是否来自于触摸框触摸屏或者是Pen笔等,可以通过GetMessageExtraInfo方法获取更多的信息根据GetMessageExtraInfo方法
- 【Flask】在Flask应用中使用Flask-Limiter进行简单CC攻击防御
SmallBambooCode
flaskpython后端
前提条件已经有一个Flask应用。已经安装了Flask和redis服务。步骤1:安装Redis和Flask-Limiter首先,需要安装redis和Flask-Limiter库。推荐在生产环境中使用Redis存储限流信息。pipinstallredisFlask-LimiterFlask-Limiter会通过redis存储限流信息,确保应用不会在高并发的情况下发生性能瓶颈。步骤2:配置Redis连
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =