- AI 在自动驾驶路径规划中的深度强化学习优化
QuantumWalker
人工智能自动驾驶机器学习
```htmlAI在自动驾驶路径规划中的深度强化学习优化在当今快速发展的科技领域中,人工智能(AI)的应用正在不断拓展其边界。特别是在自动驾驶技术中,AI的应用已经从简单的感知和识别发展到了复杂的决策和控制阶段。其中,深度强化学习作为AI的一个重要分支,在自动驾驶路径规划中发挥着越来越重要的作用。一、深度强化学习简介深度强化学习是一种结合了深度学习和强化学习的机器学习方法。它通过让智能体在环境中进
- 黑客自学教程(非常详细)黑客零基础入门到精通,收藏这篇就够了
爱吃小石榴16
网络安全黑客技术黑客网络服务器运维android数据库web安全安全
新手如何通过自学黑客技术成为厉害的白帽黑客?我目前虽然算不上顶尖的白帽大佬,但自己在补天挖漏洞也能搞个1万多块钱。给大家分享一下我的学习方法,0基础也能上手学习,如果你能坚持学完,你也能成为厉害的白帽子!一、打好基础一上来就去玩各种工具的都是脚本小子,如果你是准备在技术这条路上走得长远,那这些必备的基础知识一定要学好。1.网络安全基础导论尤其是法律法规和发展方向,一定要对网络安全有清楚的认知!2.
- k近邻算法(kNearest Neighbors) 原理与代码实例讲解
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
k-近邻算法,聚类,分类,分离散数据,决策边界,邻域,机器学习,监督学习k-近邻算法(k-NearestNeighbors)-原理与代码实例讲解k-近邻算法(k-NearestNeighbors,简称kNN)是一种简单的监督学习方法,它在机器学习领域有着广泛的应用。kNN算法的核心思想是:在特征空间中,如果一个样本附近的k个最近邻样本的大多数属于某个类别,则该样本也属于这个类别。这种基于局部决策的
- 智能交通中的深度学习应用:从理论到实践
Blossom.118
机器学习与人工智能深度学习人工智能机器学习机器人神经网络sklearn目标检测
最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。在当今数字化时代,人工智能技术正以前所未有的速度改变着我们的生活,其中智能交通领域是人工智能技术大放异彩的重要舞台之一。深度学习作为人工智能的核心技术之一,为智能交通的
- 每日传习1:个人的《传习录》学习计划
良知即吾心
每日传习传习录心学学习
一直想系统的学习《传习录》,学习阳明心学,但却总觉得不到时候。经过了这几年的成长,我的心智更加成熟,心性也更加沉稳一些,感觉现在的自己有信心能把《传习录》系统的学完,于是就开始了传习录的每日学习。具体的学习方法暂定如下:第一轮:先把《传习录》的一篇内容手打到这里。这一步相当于手抄书,虽没有直接手抄的效果好,但是我的字实在太难看,手抄的话,说不定会抹杀我学习的热情。搞清楚文章中每个字的读音。通读若干
- 文献调研[eeg溯源的深度学习方法](过程记录)
我要学脑机
#神经生物学原理深度学习人工智能
文章目录问题AI回答关键词组合搜索方式说明限定字段**1.AllFields(所有字段)****2.EEGsourcerecon(EEG源重建)****3.Title(标题)****4.Author(作者)****5.PublicationTitles(期刊/会议名称)****6.YearPublished(发表年份)****7.Affiliation(机构)****8.FundingAgency
- KNN算法数字识别实战:训练集、测试集与代码实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:KNN算法,作为一种经典的监督学习方法,特别适用于分类和回归问题,在模式识别和数据挖掘中应用广泛。本文通过构建数字识别任务的训练集和测试集,并提供完整的代码实现,向读者展示如何使用KNN算法进行数字识别。文章详细解释了K值选择、数据预处理、距离计算、最近邻选择、类别决定以及模型评估等关键步骤,并强调了KNN在大数据集中的效率问题。1.KNN算法概述与在数字识别
- Spring Boot + LangChain 构建 RAG 应用
程序员丸子
langchainAI大模型语言模型自然语言处理人工智能大语言模型RAG
使用LangChain构建RAG应用程序什么是RAG?检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种结合了检索和生成两种关键技术的机器学习方法。这种方法在自然语言处理任务中特别有效,例如对话系统和问答系统。RAG的关键组件检索:•RAG首先从大型数据集或知识库中检索与用户查询相关的文档或数据。•通常使用信息检索技术,如向量搜索或关键词匹配。生成:•在检索到
- 【C语言练习】100. 使用C语言实现简单的自然语言理解算法
视睿
从零开始学习机器人c语言算法开发语言排序算法
100.使用C语言实现简单的自然语言理解算法100.使用C语言实现简单的自然语言理解算法关键词匹配算法简介示例代码:简单的关键词匹配算法代码说明示例运行扩展功能其他方法基于规则的方法统计机器学习方法C语言中统计机器学习方法概述常见统计机器学习算法的C实现贝叶斯定理基础算法核心思想常见变体实现示例(Python)优缺点优化库与工具性能与注意事项有限状态自动机(FSA)深度学习接口调用混合方法100.
- 04、谁发明了深度学习的方法,是怎么发明的?
深度学习的发展是多位研究者长期探索的结果,其核心方法的形成并非由单一人物“发明”,而是历经数十年理论积累与技术突破的产物。以下从关键人物、核心技术突破及历史背景三个维度,梳理深度学习方法的起源与发展脉络:一、深度学习的奠基者与关键贡献者1.GeoffreyHinton:从神经网络到深度学习的理论突破核心贡献:20世纪80年代,Hinton与DavidRumelhart等人重新引入并完善了反向传播算
- TopNet:基于Transformer的高效点云几何压缩网络模型详解
清风AI
深度学习算法详解及代码复现计算机视觉算法深度学习人工智能计算机视觉神经网络transformer卷积神经网络python
一、研究背景与挑战随着激光雷达(LiDAR)技术的普及,点云数据在自动驾驶、三维重建等领域得到广泛应用。然而,点云数据的无序性、稀疏性给存储和传输带来巨大挑战。传统的点云几何压缩(PCGC)方法难以平衡压缩率与精度,而深度学习方法逐渐成为主流。现有方法主要分为两类:CNN-based方法:通过3D卷积提取局部特征,但受限于固定感受野,难以捕捉长距离依赖。Transformer-based方法:利用
- Task 01 第一章习题
1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0与1的随机变量上的概率分布。假设观测到伯努利模型n次独立的数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。回忆知识点:统计学习方法三要素为:模型+策略+算法模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。策略:统计学习要考虑按照什么样的准则选
- 《Vue.js前端框架技术学习心得》
dingjiGGbao
前端框架vue.js前端
一.初遇Vue.js二.数据绑定的便捷性三.组件化思维的养成四.生命周期钩子函数的理解五.指令系统的强大功能六.响应式原理的深入理解七.以下是我平时写的一些代码截图八.学习方法与实践的重要性在本次Vue.js的课程学习中,我收获了许多宝贵的知识和技能,每一个知识点都像是打开了一扇通往前端开发新世界的大门。一.初遇Vue.js最初接触Vue.js时,其简洁直观的语法立刻吸引了我。与传统的JavaSc
- PolyTouch:一种利用触觉扩散策略实现丰富接触操作的稳健多模态触觉传感器
三谷秋水
智能体计算机视觉机器学习机器人计算机视觉人工智能深度学习
25年4月来自MIT和TRI的论文“PolyTouch:ARobustMulti-ModalTactileSensorforContact-richManipulationUsingTactile-DiffusionPolicies”。在非结构化的家庭环境中实现稳健的灵巧操作仍然是机器人技术的重大挑战。即使采用最先进的机器人学习方法,触觉无关控制策略(即仅依赖外部视觉和/或本体感觉的策略)也常常由
- 基于 8.6 万蛋白质结构数据,融合量子力学计算的机器学习方法挖掘 69 个全新氮-氧-硫键
hyperai
在细胞这个「工厂」中,氮-氧-硫(NOS)键就像一个可逆的「智能开关」,能够根据环境中的氧化还原变化调节酶活性。2021年,来自德国哥廷根乔治奥古斯特大学的团队,通过研究淋病奈瑟氏球菌的转醛醇酶,发现了存在于赖氨酸和半胱氨酸之间的NOS键。这项研究超越了单一病原体和酶的研究范畴,为跨学科的蛋白质科学、药物设计和生物工程奠定了重要基础。然而,随着蛋白质结构数据的爆炸式增长,以及科学界对蛋白质结构中化
- 基于贝叶斯学习方法的块稀疏信号压缩感知算法
feifeigo123
学习方法matlab
基于贝叶斯学习方法的块稀疏信号压缩感知算法BSBL-FM-master/BSBL_BO.m,15593BSBL-FM-master/BSBL_FM.m,12854BSBL-FM-master/Phi.mat,131256BSBL-FM-master/README.md,3954BSBL-FM-master/demo.mat,1610BSBL-FM-master/demo_fecg.m,1481BS
- 基于深度学习的智能视频分析系统:技术与实践
Blossom.118
机器学习与人工智能人工智能机器人机器学习神经网络深度学习sklearn目标检测
前言最近研学过程中发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击链接跳转到网站人工智能及编程语言学习教程。读者们可以通过里面的文章详细了解一下人工智能及其编程等教程和学习方法。下面开始对正文内容的介绍。随着视频监控技术的普及和视频数据量的爆炸性增长,传统的视频监控系统面临着巨大的挑战。人工监控不仅效率低下,而且容易出现疲劳和疏忽。智能视频分析技术通过自动分析视频内
- 鸿蒙应用开发快速学习指南(初级篇-1 HarmonyOS简介)
一颗大宝贝
ArkTs快速学习harmonyos华为
应用程序框架基础第一课:HarmonyOS简介本篇是初级认证考试考纲的第一课,以我们对当代教科书和一些课的认知来看,从标题,我们很容易就能猜到这堂课的主要内容:这个框架是什么,为什么要用,用它有什么好处,它能解决什么问题,以及它怎么遥遥领先于同行(不是)学习方法由于作者有其他相关经验,所以直接从习题开始看起,若是0经验的小伙伴们,建议还是先看看课跟课件再看习题。学习过程首先判断题:“一次开发,多端
- 深度学习入门指南:从基础概念到代码实践
软考和人工智能学堂
人工智能#深度学习Python开发经验深度学习人工智能
深度学习入门指南:从基础概念到代码实践1.深度学习概述深度学习是机器学习的一个分支,它通过模拟人脑神经元的工作方式,构建多层次的神经网络模型来处理复杂的数据模式。与传统机器学习方法相比,深度学习能够自动从原始数据中学习特征表示,无需过多的人工特征工程。深度学习已经在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展。例如,ImageNet竞赛中深度学习模型的识别准确率已经超过人类水平,而GP
- 【数据挖掘】动态正则格兰杰因果学习方法
hans汉斯
论文荐读数据挖掘学习方法人工智能大数据python算法动态规划
导读在医学和金融学等实际领域中,了解动态系统中的底层结构关系对于调节系统中的变量和预测系统未来状态至关重要。系统的动态变化会生成时间序列数据,通过观察时间序列数据可以分析系统的底层结构。格兰杰因果关系分析方法可以应用于一维或多维时间序列系统,现有的方法以组件式的建模方式分析每个系统变量特定的因果关系,受限于时间方向的强假设性和组件模型的单一性,其无法准确地挖掘出时间序列中的因果关系结构。本文提出了
- 基于YOLOv8的人脸识别与跟踪系统设计与实现
YOLO实战营
YOLOui目标检测目标跟踪深度学习
1.项目背景与意义随着智能安防、智能监控、人机交互等领域的快速发展,人脸识别与跟踪技术受到了广泛关注。它不仅在安防监控系统中用于身份认证与异常检测,也在智能门禁、自动考勤和营销系统中发挥重要作用。传统的人脸检测多依赖Haar级联或基于特征的检测方法,准确率和鲁棒性有限。深度学习方法,尤其是YOLOv8等先进目标检测框架,实现了实时且高准确度的人脸检测。同时,结合人脸识别(身份验证)和多目标跟踪,可
- 强化学习-K臂老虎机
强化学习强化学习(ReinforcementLearning,RL)是一种机器学习方法,强化学习的基础框架是马尔可夫决策过程,它允许智能体(Agent)能够在与环境(Environment)的交互中通过试错来学习最优策略。智能体在环境中执行行动(Action),并根据行动的结果接收反馈,即奖励(Reward)。这些奖励信号指导智能体调整其策略,以最大化长期累积奖励。强化学习的核心是价值函数(Val
- 基于MATLAB的车牌检测系统:传统图像处理与深度学习的创新融合
芯作者
D2:MATLAB设计matlab
车牌检测是智能交通系统中的关键技术,在停车场管理、违章抓拍等场景应用广泛。本文将介绍一种结合传统图像处理和深度学习的创新方法,在MATLAB中实现高精度车牌检测系统。一、创新技术路线传统方法在简单场景下高效,但复杂环境下鲁棒性不足;深度学习方法精度高但计算量大。我们创新性地融合二者:预处理阶段:使用传统图像处理快速定位候选区域验证阶段:采用轻量级CNN网络过滤误检区域后处理阶段:结合颜色空间分析增
- 计算机视觉与深度学习 | 低照度图像增强算法综述(开源链接,原理,公式,代码)
单北斗SLAMer
低照度图像增强低照度图像处理计算机视觉算法
低照度图像增强算法综述1算法分类与原理1.1传统方法1.2深度学习方法2核心算法详解2.1多尺度Retinex(MSRCR)实现2.2SCI自校准光照学习2.3自适应伽马校正2.4WaveletMamba架构3开源资源与实现3.1主流算法开源库3.2关键代码实现4评估与实验对比4.1客观评价指标4.2算法性能对比5未来研究方向全面综述低照度图像增强算法,包括开源链接、原理、公式和代码实现。主要内容
- 【Python】串口通信库pyserial2
宅男很神经
python开发语言
6.8多传感器融合:YOLO与激光雷达/雷达数据的深度结合6.8.1引言:为什么需要非视觉传感器——以激光雷达为例摄像头因其丰富的信息(颜色、纹理、形状)而成为自动驾驶、智能监控等视觉感知系统的核心。但其固有的局限性不容忽视:深度信息缺失:单目摄像头难以直接获取目标的精确三维位置和距离,需要复杂的几何或深度学习方法进行估算。光照依赖:在强光、弱光、逆光或夜晚环境下,图像质量急剧下降,导致目标检测性
- OCR技术如何实现铁路集装箱号的自动识别?
孚为智能科技
火车车号识别系统ocr人工智能图像处理视觉检测大数据5G
在铁路物流运输中,集装箱号的快速准确识别是提升效率的关键环节。通过先进的OCR(光学字符识别)技术,结合计算机视觉与深度学习方法,可以实现铁路集装箱号的高效、可靠识别。一、OCR技术的核心流程1.图像采集与预处理采用高分辨率摄像头(支持夜视及复杂天气条件)采集集装箱图像,针对火车进站、起重机作业、半挂车运输等不同场景调整安装角度。采集到的图像经过去噪、对比度增强、二值化等预处理,以提升后续识别的准
- 基于深度学习的文本检索
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的文本检索文本检索(TextRetrieval)是指在大量文本数据中,根据用户的查询文本找到相关文档。基于深度学习的方法通过提取文本的高层次语义特征,实现了高效和准确的文本检索。深度学习在文本检索中的优势语义理解:深度学习模型能够捕捉文本中的复杂语义关系,相比传统的基于关键词匹配的方法更加准确。自动特征提取:深度学习方法可以自动从文本中提取有用的特征,无需手工设计特征。端到端学习:深度
- 机器学习模型——集成算法(一)
梦想成为一名机器学习高手
机器学习算法人工智能决策树集成学习
集成学习的定义:集成学习,顾名思义通过将多个单个学习器集成/组合在一起,使它们共同完成学习任务,以达到提高预测准确率的目的。有时也被称为“多分类器系统(multi-classifiersystem)”。集成学习概述:集成学习是一种机器学习方法,它通过组合多个弱学习器来形成一个强学习器,以提高预测性能。以下是一些集成学习的关键点:结合多个学习器:集成学习的核心思想是通过训练多个学习器(基学习器)并结
- 创客匠人六大核心竞争力实战:创始人IP年破亿的可复制路径
创客匠人老蒋
网络创客匠人创始人IP打造AI数字人
创客匠人六大核心竞争力已帮助众多创始人IP实现从0到亿的突破,这些实战案例揭示了一套可复制的变现路径——通过垂直聚焦定位、结果付费降低风险、资源整合放大势能,最终在AI技术与系统方法论的加持下实现爆发式增长。垂直聚焦定位:从“大而全”到“小而精”。某教育IP初期泛泛而谈“学习方法”,经创客匠人诊断后聚焦“考研英语阅读技巧”,通过120+行业的深耕经验设计内容体系,3个月内精准粉丝从1万增长至10万
- 基于YOLOv10的YCB物体与模型集目标检测应用——玩具、厨房物品、家居物品等目标检测
YOLO实战营
YOLO目标检测目标跟踪ui人工智能计算机视觉
引言目标检测作为计算机视觉中的一个重要领域,已经被广泛应用于自动驾驶、安防监控、医疗影像等多个行业。在这一领域中,深度学习方法,尤其是基于YOLO(YouOnlyLookOnce)系列的目标检测模型,已成为目前最为流行的技术之一。YOLOv10是YOLO系列中的最新版本,它在目标检测精度和速度上均表现出了优异的性能。本文将详细介绍如何使用YOLOv10进行YCBObjectandModelSet数
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1