- Unity基础包 刚体FPS RigidbodyFirstPersonController 脚本研究
暗光之痕
Unity起航unityu3d基础包脚本
版本:unity5.3.4语言:C#今天又研究了一个脚本。刚体的第一人称,不过这个脚本没有像之前的FPS脚本一样,加那么多另外的脚本,唯一一个就是MouseLook,这个脚本我们之前分析过了,就不再赘述了。所以整个看下来都是一个比较完整的FPS模型,个人喜欢用这个刚体实现,因为以后用其他什么力都比较方便。下面上代码://刚体FPS移动主脚本,用刚体和胶囊组件代替了CharacterControll
- 我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!
AI生成曾小健
自然语言处理人工智能
我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!关于NLP那些你不知道的事2025年01月29日13:08我把DeepSeek-R1推理能力知识蒸馏到Qwen2,效果真的炸裂!!!一、什么是知识蒸馏?知识蒸馏是一种模型压缩技术,用于将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)。其核心原理是教师模型通过预测结果(如概率分布或推理过程)向学生模型传授知识,学生模
- 校招154W!DeepSeek待遇和核心成员曝光!
AI生成曾小健
人工智能
校招154W!DeepSeek待遇和核心成员曝光!DeepSeek的薪酬模式极为慷慨,提供员工一年14薪的福利。其高薪职位如深度学习研究员,年薪最高可达税前154万元。同时,该公司也注重给予其他职位合理薪酬,如客户端研发工程师年薪30万,实习生日薪500元,并提供转正机会及房补。更有平台显示,DeepAGI大模型实习生日薪高达500-1000元。尽管这些待遇与硅谷相比仍有差距,但已相当优厚。Dee
- LAMMPS实操系列(四): 高熵合金FCC-CoCrCuFeNi的退火模拟
测试狗科研
科研测试材料测试统一建模语言
我们前几期文章内容详细介绍了通过LAMMPS程序进行大量FCC-CoCrCuFeNi高熵合金建模与最稳定结构的筛选,并最终赛选出了我们所建1000个模型中能量最小也就是最稳定的结构。本章我们将继续通过LAMMPS程序对我们筛选出来的最稳定结构进行退火处理。退火是一种对材料的热处理工艺,指的是将材料缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。其目的是降低材料的残余应力,减少变形与裂纹倾向,
- 如何寻找好用的GPTs模型?
小宝哥Code
ChatGPT与AIGC人工智能
要有效地寻找和使用好用的GPT模型,可以按照以下步骤来选择和应用最合适的模型,尤其是在科研或工作中需要完成特定任务时:1.明确需求和任务在寻找适合的GPT模型之前,首先需要明确你要解决的任务或需求。不同的GPT模型在处理各种任务时表现不一样。常见的任务包括:文本生成:创作文章、生成报告、写作论文等。问答系统:快速解答科研问题、技术问题等。翻译和润色:翻译论文、改进文章语言质量等。数据分析和图表生成
- Day29(补)-【AI思考】-精准突围策略——从“时间贫困“到“效率自由“的逆袭方案
一个一定要撑住的学习者
#AI深度思考学习方法人工智能unity游戏引擎
文章目录精准突围策略——从"时间贫困"到"效率自由"的逆袭方案**第一步:目标熵减工程(建立四维坐标)**与其他学习方法的结合**第二步:清华方法本土化移植**与其他工具对比**~~第三步:游戏化改造方案~~****第四步:环境重塑工程****第五步:技术杠杆矩阵****第六步:风险对冲策略**可行性验证模型甘特图OKR看板精准突围策略——从"时间贫困"到"效率自由"的逆袭方案让思想碎片重焕生机的
- Python Django ORM
qq_15654157
Pythonpython
一、ORM介绍1.什么是ORM?ORM全拼Object-RelationMapping.中文意为对象-关系映射.在MVC/MVT设计模式中的Model模块中都包括ORM2.ORM优势(1)只需要面向对象编程,不需要面向数据库编写代码.对数据库的操作都转化成对类属性和方法的操作.不用编写各种数据库的sql语句.(2)实现了数据模型与数据库的解耦,屏蔽了不同数据库操作上的差异.不在关注用的是mysql
- 【Oracle篇】使用impdp导入报错ORA-39001:ORA-39000:ORA-39142:incompatible version number xxx in dump file的问题解决
奈斯DB
Oracle专栏oracle数据库
《博主介绍》:✨又是一天没白过,我是奈斯,从事IT领域✨《擅长领域》:✌️擅长阿里云AnalyticDBforMySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控;并对SQLserver、NoSQL(MongoDB)有了解✌️大佬们都喜欢静静的看文章,并且也会默默的点赞收藏加关注如标题所示这篇文章是记录并分享一下使用数据泵导入时的报错,这个报错是博主在一年之
- 深度学习过程是什么
小松要进步
李哥深度学习深度学习
问:深度学习是:一组原始数据,经过线性变换、非线性变换、偏差加和等操作后得到一组预测数据,再根据损失函数计算预测数据和原始数据的差值,用差值数据对权重和偏差求偏导,这里的偏导数的值也就是使得损失减小的最佳方向,然后根据偏导数的方向和步长更新权重和偏差,对吗答:您的描述大致正确,但有一些细节需要澄清和修正,以更准确地反映深度学习中模型训练的过程。以下是详细的解释:1.原始数据处理:一组原始数据首先通
- 大数据分析案例-基于逻辑回归算法构建抑郁非抑郁推文识别模型
艾派森
大数据分析案例合集机器学习人工智能python数据挖掘回归
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+喜欢大数据分析项目的小伙伴,希望可以多多支持该系列的其他文章大数据分析案例合集
- 第05章 12 可视化热量流线图一例
捕鲸叉
VTK编程学习VTK信息可视化
下面是一个使用VTK(VisualizationToolkit)和C++编写的示例代码,展示如何在一个厨房模型中可视化热量流线图,并按照热量传递速度着色显示。这个示例假设你已经安装了VTK库,并且你的开发环境已经配置好来编译和运行VTK程序。示例代码#include#include#include#include#include#include#include#include#include#in
- TensorBoard可视化工具支持哪些类型的图表?
alankuo
人工智能
TensorBoard支持多种类型的图表,以下是详细介绍:标量图(Scalars)定义与用途:用于展示单个数值随时间(通常是训练步骤或迭代次数)的变化情况。在深度学习模型训练中,最常见的是损失函数值和评估指标(如准确率、精确率、召回率等)的变化曲线。示例:例如,在训练一个图像分类模型时,记录训练集和测试集上的损失函数值。通过标量图,可以直观地看到随着训练轮次(epochs)的增加,损失函数值是如何
- 《企业网络安全架构与实战指南:从蓝队防御到零信任网络部署》
Yimuzhizi
网络安全web安全安全网络安全人工智能架构网络搜索引擎
项目:《企业网络安全架构与实战指南:从蓝队防御到零信任网络部署》姓名:飞花似梦Flydream日期:2024年11月21日目录蓝队基础企业网络架构高层管理IT管理中央技术团队安全部门企业管理技术信息安全管理成熟度模型(ISM3)安全职能安全团队成员典型企业网络分区模糊的边界外部攻击面身份管理识别Windows典型应用识别Linux典型应用识别WEB服务识别客户端设备身份和访问管理目录服务企业数据存
- 《攻克语言密码:教AI理解隐喻与象征》
程序猿阿伟
人工智能
在自然语言处理(NLP)领域,让计算机理解人类语言中的隐喻和象征,是迈向更高语言理解水平的关键一步。从“时间就是金钱”这样的概念隐喻,到文学作品里象征着坚韧的“寒梅”,这些非字面意义的表达方式承载着丰富的情感与文化内涵。然而,对于基于规则和数据驱动的NLP模型来说,理解隐喻和象征一直是块难啃的硬骨头。理解隐喻与象征:人类语言的独特魅力隐喻和象征作为常见的修辞手法,为语言表达增添了生动性与深度。隐喻
- python系列:如何在FastAPI中使用Pydantic的BaseModel上传文件和字典列表?
坦笑&&life
#pythonpythonfastapiwindows
如何在FastAPI中使用Pydantic的BaseModel上传文件和字典列表?如何在FastAPI中使用Pydantic的BaseModel上传文件和字典列表?问题:回答:虽然`Pydantic模型`过去不允许使用`Query字段`,并且必须在单独的依赖类中实现查询`parameter-parsing`,如本答案和本答案所示,但这一点最近发生了变化,因此,可以使用`BaseModel类`将`Q
- Python使用FastApi开发接口
冉成未来
pythonfastapi开发语言
文章目录python开发web框架简介FastApi安装安装依赖包代码编写创建数据库连接模块database.py创建数据库实体模块model.py创建实体类模型模块schemas.py创建操作数据库模块curd.py创建接收请求模块main.py创建运行模块run.py项目运行编写完以上代码,通过以下命令进行项目启动查看项目接口pyinstalle打包FastApi项目项目通过uvicorn运行
- FastApi 练习之请求体子类模型之Set传参
五指山西
pythonapi
代码片段,注意tags是Set类型传参教程代码:fromtypingimportOptional,SetfromfastapiimportFastAPIfrompydanticimportBaseModelapp=FastAPI()classItem(BaseModel):name:strdescription:Optional[</
- 【手写数据库内核组件】0301 缓存模型介绍,缓存分层架构与缓存映射算法,以及缓存淘汰替换算法,同步一致的策略
韩楚风
C语言实战-手写数据库内核组件数据库缓存架构c语言数据结构
0301缓存介绍专栏内容:postgresql使用入门基础手写数据库toadb并发编程个人主页:我的主页管理社区:开源数据库座右铭:天行健,君子以自强不息;地势坤,君子以厚德载物.文章目录0301缓存介绍一、概述二、多样的数据造就各异的缓存三、缓存的架构四、缓存算法4.1缓存组织算法4.2缓存映射算法4.3缓存替换算法4.4缓存同步算法五、总结结尾
- Lite.Ai.ToolKit - 一个轻量级的 C++ 工具包
小众AI
AI开源开源人工智能AI编程算法
**Lite.Ai.ToolKit**:一个轻量级的C++工具包,包含100+个很棒的AI模型,例如对象检测、人脸检测、人脸识别、分割、遮罩等。请参阅ModelZoo和ONNXHub、MNNHub、TNNHub、NCNNHub。3700Stars711Forks0Issues6贡献者GPL-3.0LicenseC语言代码:https://github.com/DefTruth/lite.ai.to
- 《解码AI大模型涌现能力:从量变到质变的智能跃迁》
人工智能深度学习
在当今科技飞速发展的时代,人工智能大模型的涌现能力成为了众人瞩目的焦点。从ChatGPT与用户的流畅对话,到GPT-4在复杂任务中的出色表现,这些大模型仿佛一夜之间解锁了超乎想象的技能,那么,这种神奇的涌现能力究竟是如何产生的呢?海量数据:知识的基石数据对于大模型,就如同食物对于人类。随着互联网的迅猛发展,数据呈爆炸式增长,为大模型的训练提供了丰富的素材。以GPT-3为例,它的训练数据涵盖了海量的
- tortoise orm的常用方法及示例
CCCout
python服务器开发语言
模型导入依赖fromtortoise.modelsimportModel描述模型模型示例:classTournament(Model):id=fields.IntField(primary_key=True)name=fields.TextField(description="名称",min_length=2,max_length=50)created=fields.DatetimeField(a
- 【机器学习】如何在Jupyter Notebook中安装库以及简单使用Jupyter实现单变量线性回归的模型f
Lossya
机器学习jupyter线性回归人工智能开发语言python学习
引言JupyterNotebook中有一些魔法指令,需要安装第三方库文章目录引言一、安装方法方法一:使用`pip`或`conda`命令方法二:在命令行(终端或命令提示符)中安装二、使用JupyterNotebook实现单变量线性回归的模型fw,bf_{w,b}fw,b2.1工具2.2问题陈述2.3创建`x_train`和`y_train`变量2.4训练示例的数量`m`2.5训练示例`x_i,y_i
- SQLAlchemy ORM在Python Web开发中的核心作用探究
不一样的信息安全
网络杂烩sql
摘要在PythonWeb开发领域,SQLAlchemyORM扮演着至关重要的角色。作为一种对象关系映射工具,它能够将Python类与数据库表相映射,实现数据行与Python对象之间的转换。开发者可以使用面向对象的方法操作数据库,无需直接编写SQL语句,从而大幅提升开发效率并降低出错概率。SQLAlchemyORM提供了一套强大而灵活的数据库操作方法,助力开发者快速构建和维护复杂的数据模型。关键词S
- COCO8 数据集上训练 YOLO11n:从入门到跑路(100 轮训练实战)
星际编程喵
Python探索之旅目标跟踪人工智能计算机视觉机器学习
前言训练YOLO11n,听起来就像是给赛博世界的“战斗天使”装上双核发动机,而COCO8数据集,则是那个小小的试验场。今天,我们就要在这个数据集上训练YOLO11n模型100轮,见证它如何从一个懵懂的“AI萌新”成长为“目标检测大佬”。本篇文章将以专业又幽默的方式,带你深入了解训练流程,并提供完整代码示例,让你轻松掌握这项技术。简介YOLO(YouOnlyLookOnce)是目标检测领域的明星模型
- 华为ipd项目管理流程_IPD产品开发与管理术语大全
weixin_39801991
华为ipd项目管理流程
IPD相关术语BB,buildingblock,组件BG,businessgroup,业务群BLM,businessleadershipmodel,业务领先模型BMT,businessmanagementteam,业务管理团队BP,businessplanning,业务计划CB,capabilitybaseline,能力基线CBB,commonbuildingblock,通用构建模块CDP,cha
- 灰色预测模型_预测模型——灰色模型
weixin_39548740
灰色预测模型
网上有许多大佬写的灰色预测模型,写的非常的棒,但是我个人感觉,在公式部分,许多大佬在写最小二乘法得出a,b的值的时候并不是那么细致,所以我写这一篇灰色模型既是详细介绍公式的由来,同时也是为后续我要写的组合模型,如灰色模型与神经网络的结合,灰色模型与马尔可夫链式模型的结合做一个铺垫,希望对大家有帮助。1,灰色系统介绍灰色系统是由华中科技大学的邓聚龙教授于80年代初创立,该系统作为新兴的横断学科,在短
- 火山方舟 Python SDK豆包模型环境配置错误集锦(Mac电脑)
yitahutu79
大模型运行错误集锦pythonmacos开发语言
下载豆包频频出错pipinstall'volcengine-python-sdk[ark]'通过官方给的下载方式总是提示pipinstall'volcengine-python-sdk[ark]'ERROR:Cannotexecute`setup.py`sincesetuptoolsisnotavailableinthebuildenvironment.所以选择下载源码gitclonehttps:
- [特殊字符]文献阅读分享:《负面情绪更吸睛?利用大型语言模型重构新闻推荐系统中的情感框架》
Sheakan
推荐系统论文阅读总结语言模型重构人工智能
论文背景在当今信息爆炸的时代,新闻推荐系统(NewsRecommenderSystems,NRS)成为用户获取新闻的重要工具。然而,新闻内容的呈现方式(即新闻框架)对用户的参与度和付费意愿有着深远的影响。随着人工智能技术的发展,大型语言模型(LLMs)逐渐被引入新闻生产过程,为新闻框架的重构提供了新的可能性。本文通过实验研究,探讨了基于LLM的情感框架重构对用户情感、参与度和付费意愿的影响。相关工
- java工作流模式、背包模式、适配器工厂模式整合架构,让服务任务编排更便捷
窗外的寒风
适配器模式架构
工作流和背包模式虽然不在23种常用设计模式中,但是在对任务编排处理类的业务代码使用起来是非常有用的。下面给大家介绍下工作流模式:例如,我之前有个项目需要对模型进行转换,因为不同配置的模型需要使用的转换方法不同,且单个模型需要经历多次的执行转换脚本,那就可以把每个脚本抽离出来封装为工作流中的一个字节点,通过对节点编排适应不同的转换任务,代码流程清晰,转换流程通过配置文件进行配置。背包模式呢,其实并不
- CUDA编程(一):GPU计算与CUDA编程简介
AI Player
CUDA人工智能CUDANVIDIA
CUDA编程(一):GPU计算与CUDA编程简介GPU计算GPU硬件资源GPU软件资源GPU存储资源CUDA编程GPU计算NVIDIA公司发布的CUDA是建立在GPU上的一个通用并行计算平台和编程模型,CUDA编程可以利用GPU的并行计算引擎来更加高效地解决比较复杂的计算难题。GPU的并行计算最成功的一个应用就是深度学习领域。GPU通常不作为一个独立运行的计算平台,而需要与CPU协同工作,它可以看
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文