- 图像超分,提高图像分辨率的方法和工具
风暴之零
python图像处理深度学习
图像超分是一种图像处理技术,旨在提高图像的分辨率,使其具有更高的清晰度和细节。这一技术通常用于图像重建、图像恢复、图像增强等领域,可以帮助我们更好地理解和利用图像信息。图像超分技术可以通过多种方法实现,包括插值算法、深度学习等。其中,深度学习的方法在近年来得到了广泛的关注和应用。基于深度学习的图像超分技术,可以利用深度神经网络学习图像的高频部分,从而提高了图像的分辨率和清晰度。总结:传统方法效果不
- 【大模型应用开发 动手做AI Agent】Plan and Solve策略的提出
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
【大模型应用开发动手做AIAgent】Plan-and-Solve策略的提出关键词:大模型,AIAgent,Plan-and-Solve,智能体,策略学习,强化学习,自然语言处理1.背景介绍随着人工智能技术的飞速发展,大模型(LargeLanguageModel,LLM)在自然语言处理(NaturalLanguageProcessing,NLP)领域取得了显著的突破。大模型能够理解和生成自然语言,
- 【机器学习】自定义数据集 使用paddlepaddle框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
加德霍克
机器学习paddlepaddle逻辑回归python作业
一、使用paddlepaddle框架实现逻辑回归1.数据部分:首先自定义了一个简单的数据集,特征X是100个随机样本,每个样本一个特征,目标值y基于线性关系并添加了噪声。将numpy数转换为Paddlepaddle张量,方便后续在模型中使用。2.模型定义部分:方案1:使用nn.Sequential组网代码解释①数据生成与转换:生成自定义的特征矩阵X和目标值向量y,并添加高斯噪声模拟真实数据。使用p
- 01.双Android容器解决方案
高桐@BILL
容器Android
目录写在前面一,容器1.1容器的原理1.1.1Namespace1.1.2Cgroups(ControlGroups)1.1.3联合文件系统(UnionFileSystem)1.2容器的应用1.2.1微服务架构1.2.2持续集成和持续部署(CI/CD)1.2.3多租户环境1.2.4混合云和多云环境1.2.5大数据和机器学习1.2.6android应用场景1.3容器方案选型1.3.1Docker1.
- 监控易:智慧高校一体化综合运维解决方案
MXsoft618
运维信息安全物联网监控类
新冠疫情发生以来,线上线下教育模式的初探,促使学校、家长和社会对于教育信息化认识产生巨大的转变。伴随着云计算和物联网的发展,教育已经开启了一个全新的时代。自“十三五”规划中明确提出“支持各级各类学校建设智慧校园,综合利用互联网、大数据、人工智能和虚拟现实技术探索未来教育教学新模式”以来,政策春风也不断加码教育信息化进程,《教育信息化2.0行动计划》以及《智慧校园总体框架》的相继发布,全国各地都在积
- 深度学习-笔记1
深度学习神经网络
刚开始接触深度学习相关内容,在这儿做一个笔记:网址:https://gitee.com/paddlepaddle/PaddleNLPpaddle-nlp是一个自然语言处理NLP方面的工具包(代码库)ERNIEERNIE是百度基于BERT改进的预训练大模型,结合了Transformer架构和知识增强机制。整体上可以分为预训练模型层和任务适配层,预训练模型层负责学习通用的语言知识和语义表示,任务适配层
- 深度学习之核函数
fpcc
AI及算法ai
深度学习之核函数在机器学习中,常看到多项式核函数、高斯核函数,那什么叫核函数(KernelFunction,或者KernelTrick)呢?它有什么用呢。支持向量机通过某非线性变换φ(x),将输入空间映射到高维特征空间。特征空间的维数可能非常高。如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数K(x,x′),它恰好等于在高维空间中这个内积,即K(x,x′)=。那么支持向量机就不用
- 深度学习模型在汽车自动驾驶领域的应用
eso1983
深度学习汽车自动驾驶
汽车自动驾驶是一个高度复杂的系统,深度学习和计算技术在其中扮演核心角色。今天简单介绍一下自动驾驶领域常用的深度学习模型及其计算原理的解析。1.深度学习模型分类及应用场景1.1视觉感知模型CNN(卷积神经网络)应用:图像分类、物体检测(车辆、行人、交通标志)、语义分割(道路、车道线)。典型模型:YOLO:实时目标检测,低延迟特性适合自动驾驶。MaskR-CNN:结合检测与像素级分割,用于精确场景理解
- 跨平台物联网漏洞挖掘算法评估框架设计与实现申报书上
XLYcmy
漏洞挖掘网络安全漏洞挖掘物联网项目申报跨架构静态分析固件
本研究的研究目的主要有以下两个:1、基于此领域的相关方法,通过实验找出各个架构的最优方法2、通过设计实验,比较跨架构解决方案和各架构最优方法组合解决方案在函数识别、漏洞挖掘上的优劣性一、项目技术路线(1)构建统一规范全面的多架构物联网设备二进制程序数据集(2)针对跨架构下的二进制程序,利用逆向工具提取为图、抽象语法树等中间语言,对于不同中间语言,选择合适的深度学习方法提取出中间语言数据结构的特征,
- TDengine 做为 FLINK 数据源技术参考手册
TDengine (老段)
tdengineflink大数据涛思数据时序数据库数据库
ApacheFlink是一款由Apache软件基金会支持的开源分布式流批一体化处理框架,可用于流处理、批处理、复杂事件处理、实时数据仓库构建及为机器学习提供实时数据支持等诸多大数据处理场景。与此同时,Flink拥有丰富的连接器与各类工具,可对接众多不同类型的数据源实现数据的读取与写入。在数据处理的过程中,Flink还提供了一系列可靠的容错机制,有力保障任务即便遭遇意外状况,依然能稳定、持续运行。借
- 我的创作纪念日
蓝皮怪
程序人生生活
机缘接触和鲸社区,并且通过和鲸社区写了许多简单的项目,然后考虑可以在更多的平台介绍自己,于是在CSDN进行创作。在这个数据分析领域接触了许多新朋友。被部分读者认可,为我提供了源源不断的动力。收获全网获得了2000+粉丝。在机器学习领域、统计方法上学到了许多东西。认识了来自五湖四海的朋友,有10年数分的大佬,还有许多在校学生。日常在准备考研、工作的情况下,争取保证周更。先把工作弄完,抽空学习考研的内
- 基于Pyhton的人脸识别(Python 3.12+face_recognition库)
F2022697486
python人工智能开发语言
使用Python进行人脸编码和比较简介在这个教程中,我们将学习如何使用Python和face_recognition库来加载图像、提取人脸编码,并比较两个人脸是否相似。face_recognition库是一个强大的工具,它基于dlib的深度学习模型,可以轻松实现人脸检测和识别功能。本教程适合初学者,我们将通过一个简单的项目来了解这个库的基本用法和环境配置。代码示例importface_recogn
- AI 计算的未来:去中心化浪潮与全球竞争格局重塑
智识微光Intelligence
人工智能机器学习大数据
引言人工智能(AI)正以前所未有的速度发展,尤其是大模型训练和推理效率的提升,使得AI计算成本迅速下降,呈现出向去中心化演进的趋势。最新的DeepSeekr1模型,以仅600万美元的训练成本,达到了OpenAIo1级别的性能,表明AI技术正迈向更具普惠性的阶段。这一趋势不仅对AI产业格局产生深远影响,还将改变计算基础设施、全球科技竞争力分布,甚至可能影响人工超级智能(ASI)的未来发展。因此,AI
- 聊聊AI中的“蒸馏”技术
自由鬼
行业发展IT应用探讨产品分析对比人工智能深度学习机器学习
一、什么是“蒸馏”技术“蒸馏”技术实际上是指知识蒸馏(KnowledgeDistillation),这是一种用于压缩和优化大模型的机器学习方法。其核心思想类似于传统蒸馏:大模型(教师模型)包含丰富的知识,而小模型(学生模型)通过学习大模型的输出,从而在保持高性能的同时降低计算成本。1.知识蒸馏的过程教师模型(TeacherModel)训练先训练一个大规模基础模型,这个模型能力很强,但计算开销大。生
- AIGC时代的Vue或React前端开发
GISer_Jinger
JavascriptReactVueAIGCvue.jsreact.js
在AIGC(人工智能生成内容)时代,Vue开发正经历着深刻的变革。以下是对AIGC时代Vue开发的详细分析:一、AIGC技术对Vue开发的影响代码生成与自动化AIGC技术使得开发者能够借助智能工具快速生成和优化Vue代码。例如,通过自然语言处理模型(如ChatGPT),开发者可以描述组件的功能和样式需求,然后自动生成包含模板、脚本和样式的完整组件代码。这不仅大大提高了开发效率,还减少了人为错误的可
- WSL开发环境配置(linux + python + nodejs + docker)
Lilixxs
环境搭建基础设施linux运维服务器
配置要求及目标总体目标:完整的Linux开发环境可开发基于node.js的前端程序可开发基于python的后端程序(仅日常程序,不包含机器学习程序)可运行docker容器,用于快速搭建测试环境Linux环境要求支持centos发行版类似的操作方式和指令(如使用rpm、dnf进行软件包管理)登录用户具有root权限(执行高权限命令,输入sudo即可执行)可从国内源更新软件基本优化:内核指令优化、禁用
- 在亚马逊云科技上通过LangChain ReAct Agent开发金融多模态数据AI分析中台
佛州小李哥
AWS技术科技langchain人工智能云计算亚马逊云科技aws数据分析
项目简介:小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWSAI最佳实践,并应用到自己的日常工作里。本次介绍的是如何在亚马逊云科技机器学习托管服务AmazonSageMaker上搭建一个多模态LangChainAgent,通过ReAct逻辑让Agent通过AmazonBedrockAI模型托管服务上的大模型
- 大模型蒸馏与大模型微调技术有啥差别?
kcarly
大模型知识乱炖杂谈大模型蒸馏大模型微调大模型AI
大模型蒸馏与大模型微调是当前人工智能领域中两种重要的技术手段,它们在模型优化、性能提升和资源利用方面各有特点。以下将从定义、技术原理、应用场景及优缺点等方面对这两种技术进行深入对比。一、定义与基本概念大模型蒸馏(KnowledgeDistillation)蒸馏是一种将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)的技术。通过训练学生模型模仿教师模型的行为,实现模型压缩和性能保留的目标。蒸
- DeepSeek大模型技术深度解析:揭开Transformer架构的神秘面纱
不一样的信息安全
网络杂烩AIDeepSeek
摘要DeepSeek大模型由北京深度求索人工智能基础技术研究有限公司开发,基于Transformer架构,具备卓越的自然语言理解和生成能力。该模型能够高效处理智能对话、文本生成和语义理解等复杂任务,标志着人工智能在自然语言处理领域的重大进展。关键词DeepSeek模型,Transformer架构,自然语言,智能对话,文本生成,语义理解一、DeepSeek大模型的架构解析1.1DeepSeek大模型
- 《DeepSeek-R1 问世,智能搜索领域迎来新变革》
黑金IT
智能搜索
DeepSeek-R1是由DeepSeek公司开发的一款创新型人工智能模型,自2024年5月7日发布以来,迅速在AI领域引起广泛关注。该模型凭借其卓越的语言理解能力、高效的数据处理能力、自适应学习能力、高安全性与可靠性以及广泛的应用场景与拓展性,在众多人工智能模型中脱颖而出。DeepSeek-R1的核心特点强大的语言理解能力:DeepSeek-R1采用先进的深度学习算法,能够精准解析复杂的语义结构
- AI绘画关键词(咒语)分析与热点研究
集eee
AI作画midjourneychatgpt人工智能prompttext2imgstablediffusion
语义文本图像生成技术关键词分析与热点研究一、研究背景与研究意义随着深度学习的发展,语义文本到图像的生成技术已经取得长足进步,AI绘画也因此快速崛起。只需输入关键词,AI系统就能自动生成符合语义描述的图像,这一技术的出现,使绘画的创作方式发生革命性变化。目前主流的AI绘画模型有Midjourney、Stablediffusion和文心一格等,其使用方式多为输入一段含有图片描述的“prompt(指令)
- 基于深度学习的大规模模型训练
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的大规模模型训练涉及训练具有数百万甚至数十亿参数的深度神经网络,以处理复杂的任务,如自然语言处理、计算机视觉和语音识别。以下是关于基于深度学习的大规模模型训练的详细介绍:1.背景和动机数据和模型规模增长:随着数据量和模型复杂度的增加,传统的单机或小规模集群训练难以满足需求。计算资源需求:大规模模型训练需要大量计算资源和存储,单一设备无法满足。任务复杂性:处理复杂任务(如GPT-3、BE
- 【Python TensorFlow】入门到精通
极客代码
玩转Pythonpythontensorflow开发语言人工智能深度学习
TensorFlow是一个开源的机器学习框架,由Google开发,广泛应用于机器学习和深度学习领域。本篇将详细介绍TensorFlow的基础知识,并通过一系列示例来帮助读者从入门到精通TensorFlow的使用。1.TensorFlow简介1.1什么是TensorFlow?TensorFlow是一个开源的软件库,主要用于数值计算,特别是在机器学习和深度学习领域。它提供了一个灵活的架构来定义复杂的数
- 【学习心得】Python好库推荐——PEFT
小oo呆
【学习心得】人工智能python语言模型
一、PEFT是什么?PEFT(Parameter-EfficientFine-Tuning)是一种在深度学习中进行参数高效微调的技术。这种技术主要应用于大型预训练模型的微调过程中,目的是在保持模型性能的同时减少所需的计算资源和时间。通过PEFT,可以有效地调整模型以适应特定任务或数据集,而无需对整个模型的所有参数进行全面微调。二、PEFT使用场景在计算资源有限的情况下,如边缘设备、移动设备或低成本
- Python 机器学习 基础 之 【常用机器学习库】 NumPy 数值计算库
仙魁XAN
Python机器学习基础+实战案例python机器学习numpy数值计算
Python机器学习基础之【常用机器学习库】NumPy数值计算库目录Python机器学习基础之【常用机器学习库】NumPy数值计算库一、简单介绍二、Numpy基础1、安装NumPy2、导入NumPy3、创建数组4、数组操作5、常用函数6、矩阵运算7、广播机制8、随机数三、在机器学习中使用到Numpy的简单示例1、数据预处理1.1数据归一化1.2数据标准化2、特征工程1.1多项式特征3、简单线性回归
- 深度学习训练模型损失Loss为NaN或者无穷大(INF)原因及解决办法
余弦的倒数
学习笔记机器学习深度学习pytorch深度学习人工智能机器学习
文章目录一、可能原因==1.学习率过高====2.batchsize过大==3.梯度爆炸4.损失函数不稳定5.数据预处理问题6.数据标签与输入不匹配7.模型初始化问题8.优化器设置问题9.数值问题==10.模型结构设计缺陷==二、调试步骤三、常见预防措施一、可能原因1.学习率过高原因:学习率过高可能导致梯度爆炸,权重更新幅度过大,导致模型参数变为无穷大或NaN。学习率设置过大是常见问题,它会让参数
- 构建高效LLM应用开发架构的关键策略
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
文章标题:构建高效LLM应用开发架构的关键策略在当今快速发展的技术世界中,人工智能(AI)已经成为推动创新的核心动力。其中,大型语言模型(LLM)的应用开发尤为引人注目。LLM通过处理和理解自然语言,为各种场景提供了强大的智能解决方案,从智能客服到内容生成,再到教育应用,都有着广泛的应用前景。然而,高效地构建LLM应用开发架构面临着诸多挑战,包括性能、可扩展性和安全性等。本文将深入探讨构建高效LL
- 通过命令行工作流提升工作效率的实战教程(持续更新)
herosunly
大模型工作流实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了通过命令行工作流提升工作效率的实战教程,希望对使用大语言模型的同学们有所
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- AI大模型在智能客服系统中的应用
季风泯灭的季节
AI大模型应用技术二人工智能
目录引言1.基于大模型的智能客服系统架构2.对话生成与上下文管理对话生成上下文管理3.提高客服系统响应精度的策略1.使用专门训练的数据集2.引入实体识别和意图分类3.反馈循环和持续优化4.AI大模型在企业中的优化与调优策略1.模型微调(Fine-tuning)2.模型蒸馏(ModelDistillation)3.响应延迟优化4.持续监控与反馈结论引言随着人工智能(AI)技术的不断发展,AI大模型在
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要