- 单片机、嵌入式Linux开发大学自学路径
Oriental Son
嵌入式MCU单片机单片机学习stm32mculinux
笔者所修读的专业为物联网工程,物联网工程是一门新兴的、热门的专业,其所涉及的学科更是又多又杂,既有计算机方向的编程语言(如C、C++、Java、Python等)、数据结构与算法、操作系统、移动端应用开发、机器学习等;软硬结合的方向有数字电路单片机开发、嵌入式Linux开发等;硬件、电路方向有电路分析、数字电路、模拟电路、传感器原理、RFID、FPGA开发等;涉及信号处理的有信号与系统、通信原理等。
- 蓝桥杯备考:贪心算法之纪念品分组
无敌大饺子 1
贪心算法算法
P1094[NOIP2007普及组]纪念品分组-洛谷这道题我们的贪心策略就是每次找出最大的和最小的,如果他们加起来不超过我们给的值,就分成一组,如果超过了,就把大的单独成一组,小的待定#include#includetypedeflonglongLL;usingnamespacestd;LLw,n;constintN=3e4+10;LLa[N];intmain(){cin>>w>>n;for(in
- 有了ChatGPT和deepseek,我们还需要刷力扣吗
Ash Butterfield
人工智能
像ChatGPT这样的AI写手可以帮助我们大幅度提高工作效率,尤其是在代码生成、文档编写等方面。但对于是否需要深入学习基础算法和刷力扣这类问题,还是有一些值得思考的地方。1.AI的局限性深度发问与思考:虽然像ChatGPT这样的AI工具能生成代码,但这些代码生成并不代表你完全不需要理解基础算法。AI可以帮助你自动化一些任务,但它并不能完全替代对问题的深度理解和思考。理解算法的原理和背后的数学知识,
- 【卡车无人机】遗传算法GA求解卡车联合无人机配送路径规划【含Matlab源码 XYDG001期】
Matlab领域
Matlab路径规划(高阶版)matlab
Matlab领域博客之家博主简介:985研究生,Matlab领域科研开发者;个人主页:Matlab领域代码获取方式:CSDNMatlab领域—代码获取方式座右铭:路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(高阶版)②付费专栏Matlab路径规划(进阶版)③付费专栏Matlab路径规划(初级版)⛳️关注CSDNMatlab领域,更多资源等你来!!⛄一、
- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- 一文读懂遥感技术在农险服务全流程的应用与价值
珈和info
遥感
农业保险作为分散农业风险、提高农业生产积极性、保障农民收入稳定的重要金融政策工具,其效能直接关系到农业生产的稳定与农村经济的繁荣。然而,传统农业保险业务在信息获取、风险评估等方面的局限性日益凸显。转型之际,科技手段应如何精准地介入到农险业务的发展中来?承保、理赔、风险评估等关键业务环节能否实现从重经验到重数据的转变?已实现商业化应用的遥感技术是否能突破局限,在成本、精度、算法等维度更贴合农险业务的
- 【数据结构与算法】双向链表(添加节点、更新节点、删除节点、打印链表)
Bulut0907
#数据结构和算法双向链表链表更新节点删除节点打印链表
目录1.单向链表的缺点2.双向链表的介绍3.带head头的双向链表实现1.单向链表的缺点前面我们学习了单向链表。虽然有了单向链表,但在解决某些实际问题时,单向链表的执行效率并不高例如,若实际问题中需要频繁地查找某个节点的前驱节点,使用单向链表存储数据显然没有优势因为单向链表的强项是从前往后查找目标元素,不擅长从后往前查找元素。所以就有了双向链表2.双向链表的介绍双向链表是一种复杂类型的链表,它的节
- 算法面试题
阿芯爱编程
面试算法算法
以下是一些常见的算法面试题:一、排序算法请简述快速排序算法的时间复杂度和空间复杂度,并说明其稳定性。答案:时间复杂度:平均情况:O(nlogn)O(nlogn)O(nlogn),其中nnn是待排序元素的数量。这是因为快速排序每次划分大致将数组分成两半,需要进行lognlognlogn次划分,每次划分的操作近似为线性时间。最坏情况:O(n2)O(n^2)O(n2),当每次划分都极度不平衡(例如已经有
- 【华为机考必备】华为2024届技术岗笔试全解 | 第五套
春秋招笔试突围
最新互联网春秋招试题合集华为春秋招笔试题华为
博主简介深耕互联网大厂校招的算法博主笔试突围,累计发布百万字大厂笔试解析,带领数百名学员斩获华为offer。专栏提供:✅实时更新的华为真题题库✅ACM模式编程实战模板✅高频算法思维导图速记华为笔试核心情报⏱️关键时间节点(2026届预测)地区考试时间窗口考试时长国内每周三19:00~21:002小时固定海外每周三19:00~次周19:00自选2小时连续段重要提醒:机考链接提前1天通过邮箱发送,逾期
- Go算法之希尔排序
思远久安
Go数据结构与算法小白入门算法golang后端排序算法
一、什么是希尔排序希尔排序有点像插入排序的升级版,它的主要就是,我们一开始先确定一个步长(某个长度),然后让i(初始为0)和该步长位置的值比较大小,让i不断++,再用个变量为i+该步长。接着比较之后,缩短步长大小,最终排序到合理位置。在Go语言中实现希尔排序,可以按照以下步骤进行:选择增量序列:增量序列决定了元素之间的间隔。常见的增量序列有希尔增量(初始增量为数组长度的一半,之后每次减半,直到增量
- 6种最新算法(小龙虾优化算法COA、螳螂搜索算法MSA、红尾鹰算法RTH、新雀优化算法NOA、鳑鲏鱼优化算法BFO、蜘蛛蜂优化算法SWO)求解机器人路径规划(提供MATLAB代码)
IT猿手
机器人路径规划优化算法无人机路径规划算法机器人matlab宽度优先开发语言人工智能前端
一、机器人路径规划介绍移动机器人(Mobilerobot,MR)的路径规划是移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路
- 本周MoonBit新增Wasm1引用计数支持、语法即将添加错误恢复机制
MoonBit月兔
开发语言MoonBit编程语言程序员moonbit
MoonBit更新【WasmMVP】Wasm1后端添加基于Perceus算法的引用计数支持【语法】throwraisetrycatch均被保留为关键字为了即将添加的错误处理机制【Core】List与sorted_map被移动至core/immut下List被移动至core/immut/list包中,并被移除内置类型支持leta=@immut/list.List::Cons(1,Cons(2,Nil
- 使用Python编写你的第一个算法交易程序
盼达思文体科创
Python量化金融python算法numpycondapandas金融
背景Background最近想学习一下量化金融,总算在盈透投资者教育(IBKRCampus)板块找到一篇比较好的算法交易入门教程。我在记录实践过程后,翻译成中文写成此csdn博客,分享给大家。如果你的英语好可以直接看原文。原文在数据准备阶段,采用了pandas_datareader.data读取网络数据,实际中出现了很多问题,我换成了yfinance。可以参考文末完整代码。参考资料:https:/
- 大模型应用层的创业挑战
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
大模型应用层的创业挑战关键词:大模型、应用层、创业、挑战、算法、架构、数据、资源、合作、盈利模型1.背景介绍随着计算能力和数据量的指数级增长,大模型(LargeModels)已经成为人工智能领域的关键驱动因素。大模型的应用从语言模型扩展到图像、视频和音频领域,为各行各业带来了颠覆性的创新。然而,构建和部署大模型的成本高昂,对计算资源和数据的需求也日益增加。本文将探讨大模型应用层面的创业挑战,并提供
- Hyperparameter Tuning 原理与代码实战案例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
HyperparameterTuning原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:超参数调优,模型选择,性能提升,代码实战1.背景介绍1.1问题的由来在机器学习中,模型的选择和调优是至关重要的。模型选择涉及选择合适的算法和架构,而调优则集中在优化模型参数以提升性能。然而,模型参数众多,且每个参数的取值范围可能很广,
- Python 算法交易秘籍(五)
绝不原创的飞龙
默认分类默认分类
原文:zh.annas-archive.org/md5/010eca9c9f84c67fe4f8eb1d9bd1d316译者:飞龙协议:CCBY-NC-SA4.0第十一章:算法交易-实际交易现在我们已经建立了各种算法交易策略,并成功地进行了令人满意的回测,并在实时市场中进行了纸上交易,现在终于到了进行实际交易的时候了。实际交易是指我们在真实市场小时内用真钱执行交易策略。如果您的策略在回测和纸上交易
- 如何在Python上安装xgboost?
cda2024
python开发语言
在数据科学和机器学习领域,XGBoost无疑是一款备受推崇的算法工具。它以其高效、灵活和精确的特点,成为了众多数据科学家和工程师的首选。然而,对于初学者来说,如何在Python环境中成功安装XGBoost可能会成为一个挑战。本文将详细指导你在Python上安装XGBoost的过程,帮助你快速上手这一强大的机器学习工具。为什么选择XGBoost?在深入了解安装过程之前,我们先来看看XGBoost为何
- 《DeepSeek赋能工业互联网:解锁数据深度分析新姿势》
人工智能深度学习
在工业4.0与智能制造的浪潮中,工业互联网成为制造业转型升级的关键支撑。而数据,作为工业互联网的核心资产,其深度分析的质量直接影响着企业的决策准确性、生产效率与竞争力。DeepSeek,作为AI大模型领域的佼佼者,凭借独特的算法优势,为工业互联网的数据深度分析开辟了新路径,带来了前所未有的变革。精准高效的数据采集与预处理在工业场景中,设备种类繁多、数据来源广泛且格式各异。DeepSeek研发的智能
- 基于eBPF的智能诊断平台:实现云原生系统的自愈型运维体系
桂月二二
云原生运维
引言:从被动运维到预测性自愈的进化当某电商平台通过eBPF实时诊断系统提前48小时预测到MySQL集群的锁竞争风暴时,其核心是千万级指标粒度的内核状态分析与AI驱动的根因定位算法的结合。运维数据显示,该平台将平均故障恢复时间(MTTR)从23分钟压缩到71秒,并自动修复了87%的异常事件。通过动态注入修复策略,集群CPU毛刺现象减少了94%,开创了智能运维的新纪元。一、传统可观测性工具的桎梏1.1
- AI日报 - 2025年02月16日 - 推特版
訾博ZiBo
AI日报人工智能
今日概览(60秒速览)▎AGI突破|阿里巴巴发布Qwen2.5-VL视觉语言模型,支持多模态交互新模型评测榜性能提升30%▎商业动向|NVIDIABlackwell超级芯片网络研讨会将聚焦生成式AI创新预计推动算力市场增长15%▎政策追踪|印度总统宣布AI国家战略升级,聚焦半导体与算法研发计划未来3年投入50亿美元一、今日热点(HotTopic)1.1阿里巴巴发布Qwen2.5-VL系列视觉语言模
- 从零开始掌握哈夫曼树:数据压缩与Python实现详解
吴师兄大模型
python数据结构哈夫曼树哈弗曼编码数据压缩算法开发语言
系列文章目录01-从零开始掌握Python数据结构:提升代码效率的必备技能!02-算法复杂度全解析:时间与空间复杂度优化秘籍03-线性数据结构解密:数组的定义、操作与实际应用04-深入浅出链表:Python实现与应用全面解析05-栈数据结构详解:Python实现与经典应用场景06-深入理解队列数据结构:从定义到Python实现与应用场景07-双端队列(Deque)详解:Python实现与滑动窗口应
- 后量子密码学:量子安全新防线
量子信使
量子计算密码学信息与通信深度学习安全算法机器学习
目录背景主要算法介绍基于格的密码学格的概念格密码学中的难题加密和解密过程基于多变量多项式的密码学多变量多项式基础多变量多项式密码学中的难题加密和签名过程基于编码的密码学纠错码简介编码密码学中的难题加密和解密过程安全性分析传统密码学算法在量子计算环境下的安全性RSA算法的破解风险椭圆曲线密码算法的脆弱性后量子密码学算法的安全性评估基于格的密码学算法基于多变量多项式的密码学算法基于编码的密码学算法后量
- BUUCTF 逆向工程(reverse)之Java逆向解密
若丶时光破灭
CTF-逆向工程CTF逆向工程
程序员小张不小心弄丢了加密文件用的秘钥,已知还好小张曾经编写了一个秘钥验证算法,聪明的你能帮小张找到秘钥吗?注意:得到的flag请包上flag{}提交下载好题目后,发现它是个以.class为后缀的。所以用JD-GUI打开这个文件。就可以看到Java代码importjava.util.ArrayList;importjava.util.Scanner;publicclassReverse{publi
- K-means聚类:解锁数据隐藏结构的钥匙
小村学长毕业设计
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- python 快速排名发包_2019年SEO快速排名发包技术及原理 - 立金哥
weixin_39643336
python快速排名发包
百度的惊雷算法明确的说到了禁止点击排名,对点击作弊大力度的打击。但依然有不少的商家在做这类快速排名的服务,2019年SEO快速排名发包技术及原来又是怎么样来实现的呢?打击恶意点击及快速排名目前最有效果的助力网站排名的方法有两种,分别为权重转移法和点击效果法。什么是SEO快速排名发包技术?可能对于只做正规白帽手法的朋友来说,听都没听过,又或许听过但仅仅是了解却不深入。所以接下来,虎纠自媒体给大家介绍
- DeepSeek系列模型:高效能推理与多模态处理的技术突破与实践路径
张3蜂
人工智能开源技术选型人工智能开源机器人
目录引言一、高效能推理的核心技术路径二、多模态处理的技术创新三、技术协同与落地实践四、未来技术演进方向结论引言背景与挑战AI模型规模化趋势下,推理效率与多模态融合成为关键瓶颈。DeepSeek系列模型的定位:平衡性能、效率与多模态能力的技术创新者。核心命题如何通过架构设计与算法优化实现高效推理?如何突破模态边界实现跨模态语义理解与生成?一、高效能推理的核心技术路径轻量化模型架构设计动态稀疏注意力机
- 带权重的最近任务安排算法(最近面试策略)
WePlayDirty
算法面试数据结构
一个任务j在sj开始,并在fj结束;并且每个任务都有权重。任务相容:任务安排的时间没有重叠目标:找到最大权重,且相容的任务安排#includeusingnamespacestd;typedefstruct{intiStartT;intiFinshT;intiWight;}TASK_INFO;intg_i=0;voidFindSolution(TASK_INFO*schedule,int**comp
- 算法-队列-买票需要的时间
程序员南飞
算法数据结构java职场和发展leetcode
力扣题目:2073.买票需要的时间-力扣(LeetCode)有n个人前来排队买票,其中第0人站在队伍最前方,第(n-1)人站在队伍最后方。给你一个下标从0开始的整数数组tickets,数组长度为n,其中第i人想要购买的票数为tickets[i]。每个人买票都需要用掉恰好1秒。一个人一次只能买一张票,如果需要购买更多票,他必须走到队尾重新排队(瞬间发生,不计时间)。如果一个人没有剩下需要买的票,那他
- 【重温设计模式】模板方法模式及其Java示例
万猫学社
重温设计模式及其Java实现设计模式模板方法模式java
模板方法模式的基本概念模板方法模式是一种常见的设计模式,它的名字来源于其核心思想:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。听起来可能有些抽象,但其实我们在生活中经常会遇到这样的场景。比如,我们在做饭时,通常会有一套固定的流程:洗菜、切菜、炒菜。这个流程就是一个模板,而具体的做法,比如切菜的方式、炒菜的时间等,就是
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s