- 光学超表面的人工智能
Luis Li 的猫猫
人工智能专区基础及拓展超表面设计人工智能机器学习算法
光学超表面,即能够控制光传播的平面人工介质,正在从实验室过渡到商业应用。这种转变需要先进的超结构和超表面设计,考虑可制造性并通过后处理算法提高光学性能。人工智能,尤其是机器学习的优化,为这些需求提供了解决方案。该文章系统地回顾了AI在三个关键领域的潜在影响:AI支持的超表面可制造性设计(DFM)、超越经典局部相位近似的设计以及AI赋能的计算后端。Introduction超表面是超材料的二维(2D)
- 自然语言处理(NLP)领域大语言模型学习目录大全
彬彬侠
大模型自然语言处理NLP大模型LLMGPTBERTGLM
本文主要收集了自然语言处理(NLP)领域的大语言模型,可以可以通过点击标题链接查看具体的详情。GPT系列GPT-1(GenerativePre-trainedTransformer1)模型GPT-1(GenerativePre-trainedTransformer1)是OpenAI在2018年6月提出的第一代GPT模型,也是第一个基于Transformer结构的自回归(Autoregressive
- DeepSeek时代:AI如何重塑软件开发的每个阶段,效率提升全解析
阿三0404
人工智能
在软件开发领域,时间就是竞争力。传统的瀑布模型和敏捷开发流程中,需求偏差、重复编码、测试遗漏等问题不断消耗团队精力。随着以DeepSeek为代表的AI技术突破,从需求分析到运维监控的每个环节都在发生效率革命。本文将深入解析AI在开发全流程中的具体应用,并通过真实数据揭示其带来的效率跃升。一、需求分析阶段:从模糊需求到精准拆解(效率提升65%)AI工具:自然语言处理(NLP)、需求图谱生成应用场景:
- DeepSeek:如何通过自然语言生成HTML文件与原型图?
阿三0404
ai人工智能html机器学习深度学习
在当今快节奏的开发与设计环境中,快速生成HTML文件或原型图是每个开发者与设计师的迫切需求。虽然DeepSeek无法直接生成图片,但它却能够通过自然语言生成流程图、原型图以及交互式页面,甚至可以直接输出HTML代码。本文将详细介绍如何与DeepSeek高效交流,生成你想要的HTML文件或原型图,并分享一些实用技巧。1.DeepSeek的核心功能与优势DeepSeek是一款基于自然语言处理(NLP)
- 企业AI数据安全白皮书:深寻模型会话保护与安当TDE实战
安 当 加 密
人工智能
一、引言人工智能正在重塑企业的业务流程与创新模式,从智能客服到辅助决策,从图像识别到自然语言处理,AI模型正逐步渗透到企业运营的各个环节。然而,随着AI技术的深入应用,数据安全问题也如影随形。对于部署在企业内网的DeepSeek模型而言,员工与模型的会话内容往往包含企业的核心商业信息、敏感技术参数以及员工个人隐私等关键数据。一旦这些数据遭到泄露、篡改或恶意利用,不仅会给企业带来巨大的经济损失,还可
- 就在刚刚!马斯克决定将“地球上最聪明的人工智能”Grok-3免费了!
源代码杀手
AI技术快讯人工智能python
Grok-3概述与关键功能Grok-3是由xAI开发的先进AI模型,于2025年2月19日发布,旨在提升推理能力、计算能力和适应性,特别适用于数学、科学和编程问题。作为xAI系列模型的最新版本,Grok-3延续了公司对构建强大且安全的AI系统的承诺,并推动人工智能在多个领域的应用。Grok-3的核心优势在于其大规模强化学习(RL)优化,能够在几秒到几分钟内进行深度推理,适应复杂任务的需求。配备的D
- Python开发行业薪资多少?
Java大师兄-威哥
Python编程IT技术程序员IT
大家都知道,人工智能越来越受欢迎了。而Python由于简单易用,是人工智能领域中使用最广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。Python开发行业薪资多少?我们看看图片就能知道个大概。无论是国内还是国外对于编程语言的热度调查中,Python都是数得上名的。Python热度的持续升温,自然也引起了开源团队的项目。由于OSI认可的开放源码许可,程序员可以使用Python
- 【Java】已解决java.lang.NoClassDefFoundError异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- Python爬取58同城广州房源+可视化分析
R3eE9y2OeFcU40
感谢关注天善智能,走好数据之路↑↑↑欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。消失了一段时间,这段时间在CSDN阅读了不少关于Python爬虫的文章,也学习了秦璐老师
- Win7安装新版本anaconda出现Failed to extract packages解决方案
爱编程的喵喵
Python基础课程pythonanacondawin7failedtoextra
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Win7安装新版本anaconda出
- Deepseek接入微信生态
小赖同学啊
pythonpythondeepseekdeepseek接入微信生态
要将DeepSeek接入微信,通常是指将DeepSeek的AI能力(如自然语言处理、数据分析等)集成到微信平台中,以便通过微信公众号、小程序或企业微信提供服务。以下是实现这一目标的几种常见方式:1.通过微信公众号接入微信公众号(服务号或订阅号)可以通过开发模式接入DeepSeek的API,实现智能对话、内容推荐等功能。步骤:注册微信公众号:前往微信公众平台注册账号。选择服务号或订阅号(服务号功能更
- Web3中的AI:一种去中心化智能的完整指南
lisw05
人工智能web3web3人工智能去中心化
李升伟引言Web3与人工智能(AI)的结合正在重塑数字世界的底层逻辑。Web3以去中心化、用户数据主权和区块链技术为核心,而AI凭借数据驱动的智能化能力,为去中心化网络注入决策效率和创新活力。二者的融合不仅推动技术范式的革新,更催生了从金融到社会治理的全新应用场景。本文将从技术架构、核心应用、挑战与未来趋势等维度,系统解析Web3中AI的完整图景。一、技术基础:AI与Web3的融合架构1.去中心化
- 机器学习大纲总结
excellent121
机器学习人工智能
一、概念1.人工智能人工智能包含机器学习,机器学习包含深度学习2.机器学习机器学习是实现人工智能的一种途径机器学习=传统机器学习+深度学习3.深度学习深度学习是由机器学习的一种方法发展而来4.发展三要素数据、算法、算力5.发展史5.1符号主义(20世纪50-70):专家系统占主导1950年:图灵设计国际象棋程序1962年:IBMArthurSamuel的跳棋程序战胜人类高手(人工智能第一次浪潮)5
- 机器学习入门知识
十五境剑修
机器学习人工智能
目录前言一、机器学习是什么?二、机器学习的基本类型1.监督学习2.无监督学习3.半监督学习4.强化学习三、机器学习的工作流程四、常见的机器学习算法五、机器学习的评价指标六、机器学习中的过拟合与欠拟合七、机器学习的应用八、学习机器学习的资源前言随着人工智能的发展,作为人工智能中的一个基础且重要的分支——机器学习也是愈发吸引大家来了解以及学习,那么在学习机器学习前,我们需要先来了解一下什么是机器学习,
- 人工智能时代程序员何去何从?
Meteorabcd
人工智能
人工智能时代程序员的未来:挑战与机遇并存随着人工智能(AI)技术的飞速发展,程序员这一职业正面临着前所未有的变革。AI不仅改变了编程的方式,也重塑了程序员的工作内容和职业发展路径。那么,在人工智能时代,程序员将何去何从呢?一、AI对程序员的冲击:效率提升与岗位替代AI技术的普及使得编程效率大幅提升。如今,AI辅助编程工具如GitHubCopilot、CursorAI等已经能够自动生成代码片段、优化
- 【java-数据结构】Java优先级队列揭秘:堆的力量让数据处理飞起来
学无止尽5
Java-数据结构java数据结构开发语言
我的个人主页我的专栏:人工智能领域、java-数据结构、Javase、C语言,希望能帮助到大家!!!点赞收藏❤引言在开发中,尤其是需要处理大量数据或者进行任务调度的场景下,如何高效地管理数据的顺序和优先级是一个至关重要的问题。Java提供了优先级队列(PriorityQueue),它基于堆(Heap)实现,能够以高效的方式管理数据的优先级。在本文中,我们将深入探讨优先级队列的工作原理,特别是堆的作
- 专栏问答:公共数据库发表能发表国际学术期刊吗?能够成为本硕博的毕业论文主要研究吗?以NHANES数据库为例
DAT|R科学与人工智能
用R探索医药数据科学数据库机器学习r语言r-4.2.1人工智能
随着大数据和人工智能的迅猛发展,公共数据库在医药研究中的应用日益广泛。无论是基因组学、流行病学,还是药物研发,公共数据库都提供了海量的数据资源,为研究人员节省了大量的时间和成本。然而,许多医药类专业的学生和研究者仍然对公共数据库的学术价值存在疑问:利用公共数据库的数据进行研究,是否可以发表在国际学术期刊上?能否作为本科、硕士或博士毕业论文的主要研究内容?本文将围绕这些问题展开讨论,并结合实际案例分
- 人工智能与深度学习的应用案例:从技术原理到实践创新
accurater
人工智能深度学习科技
第一章引言人工智能(AI)作为21世纪最具变革性的技术之一,正通过深度学习(DeepLearning)等核心技术推动各行业的智能化进程。从计算机视觉到自然语言处理,从医疗诊断到工业制造,深度学习通过模拟人脑神经网络的层次化学习机制,实现了对复杂数据的高效分析与决策。本文结合前沿技术框架与行业应用案例,探讨深度学习的核心原理及其在多个领域的实践路径,并附代码实例以增强技术理解。第二章深度学习的技术基
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- 用于网络安全的生成式 AI:利用 AI 增强威胁检测和响应
云上笛暮
AIforSecurity人工智能
一、引言技术的进步彻底改变了我们的生活、工作和交流方式。然而,随着这些技术的进步,保护它们免受网络威胁的挑战也随之而来。网络安全已成为任何组织的重要组成部分,随着网络攻击越来越复杂,传统的威胁检测和响应方法已不再足够。这导致了生成人工智能等新技术的发展,这些技术在增强网络安全方面显示出巨大潜力。在这篇博客中,我们将探讨生成式人工智能的概念、它在网络安全中的重要性,以及它如何用于增强威胁检测和响应。
- 深度解构:DeepSeek大模型架构与前沿应用的未来探秘
威哥说编程
架构ai
随着人工智能(AI)领域的快速发展,深度学习模型逐渐向着更加复杂和强大的方向演进。在这一波技术浪潮中,DeepSeek大模型作为一个重要代表,凭借其卓越的表现和广泛的应用,正在重新定义我们对AI的认知和期待。本篇文章将从架构到应用,全面解析DeepSeek大模型的技术特点,探索其在未来可能带来的创新与变革。1.DeepSeek大模型的架构设计DeepSeek大模型采用的是基于Transformer
- T41LQ专为人工智能物联网(AIoT)应用设计,适用于智能安防、智能家居、机器视觉等领域 软硬件资料+样品测试
li15817260414
君正人工智能物联网智能家居
君正(Ingenic)T系列芯片涵盖多个型号,每个型号根据不同应用需求提供了多个版本。以下是各型号及其主要版本:1.T23系列:T23N:标准版,适用于移动摄像机、安全监控、视频通话和视频分析等应用。T23ZN:佐罗标准版,功能与T23N类似,针对特定市场需求进行了优化。2.T31系列:T31L:简化版,适用于对成本和功耗有严格要求的应用场景。T31N:标准版,适用于广泛的智能视频应用。T31X:
- 人工智能生成内容(AIGC)对程序员的影响
AmHardy
AIGC人工智能AIGC程序员chatgptkimi
人工智能生成内容(AIGC)对程序员的影响引言AIGC技术正在深刻影响软件开发行业,给程序员带来诸多机遇和挑战。程序员不仅需要适应这些新兴技术,还要有效利用它们来提升自己的工作效率和创新能力。AIGC技术的优势效率提升代码生成:AI工具如GitHubCopilot可以预测代码片段、自动完成代码和生成文档,从而显著提升编程效率。自动化测试:AI可以自动生成测试用例和检测代码中的潜在问题,减少了手动测
- 【路径规划】基于A算法和Dijkstra算法的路径规划附Python代码
天天Matlab科研工作室
无人机matlab仿真电子资源算法python开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍路径规划作为人工智能和机器人技术领域的核心问题之一,在导航、交通运输、游戏开发等领域有着广泛的应用。解决路径规划问题,旨在找到一条从起始点到目标点,并满足特定约束条件(如最短
- 【AI】如何理解与应对AI中的敏感话题:详细分析与实用指南
丶2136
AI人工智能AI敏感话题
引言随着人工智能(AI)技术的不断发展,我们在与AI交互时,可能会遇到敏感话题的讨论限制。在许多情况下,AI系统为了避免触及社会、政治或文化敏感点,会对用户输入进行一定的筛选和过滤。那么,这些敏感话题是如何定义的,AI如何识别并避免这些话题,以及作为开发者和用户,我们该如何应对这一问题?本文将详细探讨这些问题,并通过表格、图示等方式帮助大家更好地理解。目录引言一、AI中的敏感话题分类与处理策略1.
- 智能算法安全优化与关键技术实践
智能计算研究中心
其他
内容概要智能算法的安全优化与关键技术实践已成为人工智能发展的核心命题。在医疗影像分析、金融风控、自动驾驶等场景中,联邦学习的分布式协作机制有效解决了数据孤岛问题,而生成对抗网络通过对抗训练增强数据生成能力,为小样本场景提供技术支撑。与此同时,可解释性算法通过特征重要性分析与决策路径可视化,显著提升模型透明度,降低黑箱风险。在技术实现层面,特征工程的自动化筛选与超参数动态调整策略优化了模型性能,结合
- 【YOLOv12改进trick】StarBlock引入YOLOv12,创新涨点优化,含创新点Python代码,方便发论文
zy_destiny
YOLOv12及改进优化创新人工智能深度学习机器学习YOLO神经网络开发语言python
改进模块:StarBlock解决问题:采用StarBlock将输入数据映射到一个极高维的非线性特征空间,生成丰富的特征表示,使得模型在处理复杂数据时更加有效。改进优势:简单粗暴的星型乘法涨点却很明显适用场景:目标检测、语义分割、自然语言处理等多种场景高效紧凑的模型,不适用于大模型思路来源:CVPR2024《RewritetheStars》目录1.设计动机2.启发来源3.将StarBlock引入YO
- 开源跨平台大模型工具Ollama的安全隐患
X.Cristiano
AI新闻Ollama漏洞大模型
源跨平台大模型工具Ollama的安全隐患及应对策略在当今数字化飞速发展的时代,人工智能技术尤其是大模型的应用已经渗透到我们生活的方方面面。从智能家居到医疗健康,从金融风控到教育娱乐,大模型为各个领域带来了前所未有的便利和创新。然而,随着技术的进步,安全问题也日益凸显。近期,清华大学网络空间测绘联合研究中心发布了一则关于开源跨平台大模型工具Ollama的安全通报,揭示了其默认配置中存在的严重安全隐患
- 第0节 机器学习与深度学习介绍
汉堡go
李哥深度学习专栏人工智能机器学习神经网络
人工智能:能够感知、推理、行动和适应的程序机器学习:能够随着数据量的增加而不断改进性能的算法(数学上的可解释性但准确率不是百分百,灵活度不高)深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习(设计一个很深的网络架构让机器自己学)(深度学习就是找一个函数f)机器学习算法简介(狭义)一般是基于数学,或者统计学的方法,具有很强的可解释性经典传统机器学习算法:KNN、决策树、朴素贝叶斯一
- Python常见的第三方库:requests、numpy、pandas
大数据张老师
pythonnumpypandas
常见的第三方库:requests、numpy、pandasPython拥有丰富的第三方库,涵盖了数据分析、网络爬取、人工智能、科学计算等多个领域。其中,requests、numpy和pandas是最常用的三个库,分别用于网络请求、数值计算和数据处理。本节将详细介绍它们的基本功能,并通过示例代码帮助理解它们的使用方法。requests:处理网络请求的库requests是Python中用于处理HTTP
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数