17.1 swap a number in place.(without temporary variables)
a = a ^ b;
b = a ^ b;
a = a ^ b;
17.3 Write a function which computes the number of trailing zeros in n factorial.
To count the number of zeros, we only need to count the pairs of multiples of 5 and 2. There will always be more multiples of 2 than 5 though, so, simply counting the number of multiples of 5 is sufficient.
1 public int count(int num){ 2 int count = 0; 3 if(num < 0) return -1; 4 for(int i = 5; num /i > 0; i *= 5) 5 count += num / i; 6 return count; 7 }
17.4 Write a method which finds the maximum of two numbers. You should not use if-else or any other comparison operator.
1 public int flip(int bit){ 2 return 1 ^ bit; 3 } 4 public int sign(int a){ 5 return flip((a >> 31) & 0x1); 6 } 7 public int getMax(int a, int b){ 8 int c = a - b; 9 int sa = sign(a); //if a >= 0 : 1 other : 0 10 int sb = sign(b); //if b >= 1 : 1 other : 0 11 int sc = sign(c); //depends on whether a - b overflows, like a = INT_MAX, b < 0 12 int use_sign_a = sa ^ sb; 13 int use_sign_c = flip(sa ^ sb); 14 int k = use_sign_a * sa + use_sign_c * sc; 15 int q = flip(k); 16 return a * k + b * q; 17 }
17.9 Design a method to find the frequency of occurrences of any given word in a book.
The first question that you should ask is if you will be doing this operation once or repeatedly.
Solution: Single Query
go through the book, word by word, count the number of times that words appears. O(n)
Solution: Repetitive Queries
do pre-processing on the book! create a hash table which maps from a word to its frequency.
1 Hashtable<String, Integer> setupDic(String[] book){ 2 Hashtable<String, Integer> table = new Hashtable<String, Integer>(); 3 for(String word : book){ 4 word = word.toLowerCase(); 5 if(word.trim() != ""){ 6 if(!table.containsKey(word)) table.put(word, 0); 7 table.put(word, table.get(word) + 1); 8 } 9 } 10 return table; 11 } 12 int getFrequency(Hashtable<String, Integer> table, String word){ 13 if(table == null || word == null) return -1; 14 word = word.toLowerCase(); 15 if(table.containsKey(word)) return table.get(word); 16 return 0; 17 }
17.11 Implement a method rand7() given rand5(). Given a method that generates a random number between 0 and 4, write a method that generates a random number between 0 and 6.
Nondeterministic Number of Calls
1 public int rand7(){ 2 while(true){ 3 int num = 5 * rand5() + rand5(); 4 if(num < 21) return num % 7; 5 } 6 }