- Doris通过ODBC连接MYSQL
Leo⁵
Dorismysql数据库
1.概述ODBCExternalTableOfDoris提供了Doris通过数据库访问的标准接口(ODBC)来访问外部表,外部表省去了繁琐的数据导入工作,让Doris可以具有了访问各式数据库的能力,并借助Doris本身的OLAP的能力来解决外部表的数据分析问题:支持各种数据源接入Doris支持Doris与各种数据源中的表联合查询,进行更加复杂的分析操作通过insertinto将Doris执行的查询
- LlamaIndex架构设计:大模型长期记忆模块竟暗藏图数据库玄机
威哥说编程
数据库llama
随着人工智能技术的不断发展,大型语言模型(LLM)已经在自然语言处理、文本生成、对话系统等领域取得了显著的进展。然而,尽管这些模型在理解和生成语言方面表现出色,它们却面临着一个重要问题——长期记忆的缺失。传统的语言模型通常只依赖于当前输入的信息,并且无法记住过去的上下文或从历史中积累的知识。这使得它们在需要长期记忆或复杂知识推理的任务中表现不佳。为了解决这一问题,越来越多的研究开始探索如何为大模型
- PyTorch动态计算图:如何灵活构建复杂模型
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PyTorch动态计算图:如何灵活构建复杂模型关键词:PyTorch、动态计算图、自动微分、反向传播、神经网络、模型构建、计算图优化文章目录PyTorch动态计算图:如何灵活构建复杂模型1.背景介绍1.1深度学习框架的发展1.2静态图与动态图的对比1.3PyTorch的崛起及其优势2.核心概念与联系2.1PyTorch中的张量(Tensor)2.2自动微分(Autograd)机制2.3动态计算图的
- 深度学习框架PyTorch原理与实践
AI天才研究院
AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.背景介绍3.基本概念和术语3.1PyTorch简介3.2PyTorch的特点1)自动求导机制2)GPU加速3)模型部署4)数据管道5)代码阅读友好4.核心算法原理4.1神经网络结构4.2神经网络层4.3激活函数5.实际案例——MNIST手写数字识别数据准备模型定义训练测试整体代码1.简介Deeplearning(DL)hasbeenanincreas
- Databricks 开源 LLM,训练只需三个小时
唐 城
AI-毕业设计全套springlog4jpostgresql数据库java
大数据分析公司DatabricksInc近日也加入了生成式AI领域的竞争之中,发布了一个名为Dolly的开源大型语言模型,将模型命名为Dolly是为了向第一只克隆羊多莉致敬。像ChatGPT和Bard这样的生成式AI,它们使用的数据通常来自于在成千上万不同网站,使用的数据量十分惊人,而且想要使用这些数据训练AI还需要数以千计的强大GPU在背后提供支持。Databricks希望通过开源Dolly及其
- Paddle进阶实战系列(三):基于SVTR算法的手写英文单词识别
GoAI
深入浅出OCR深入浅出AI计算机视觉OCRpaddle深度学习人工智能
作者简介:CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。公众号:GoAI的学习小屋,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️链接加群。专栏推荐:➡️
- R语言环境下载和RStudio安装教程
CyberXZ
r语言开发语言R语言
R语言环境下载和RStudio安装教程R语言是一种广泛应用于统计计算和数据分析的编程语言。它提供了丰富的统计和图形功能,被广泛用于数据科学、机器学习和数据可视化等领域。本教程将向您介绍如何下载和安装R语言环境以及RStudio集成开发环境。步骤1:下载R语言环境首先,您需要下载R语言环境。请按照以下步骤进行操作:在您的Web浏览器中打开R官方网站(https://www.r-project.org
- 自动驾驶系列—深度剖析自动驾驶芯片SoC架构:选型指南与应用实战
学步_技术
自动驾驶自动驾驶架构人工智能SoC芯片
欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中一起航行,共同成长,探索技术的无限可能。探索专栏:学步_技术的首页——持续学习,不断进步,让学习成为我们共同的习惯,让总结成为我们前进的动力。技术导航:人工智能:深入探讨人工智能领域核心技术。自动驾驶:分享自动
- Python的第三方库pandas
y_bccl27
Pythonpython
1.pandas的介绍pandas是Python的一个数据分析包,最初由AQRCapitalManagement于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发团队继续开发和维护,属于PyData项目的一部分。pandas最初被作为金融数据分析工具而开发出来,因此pandas为时间序列分析提供了很好的支持。pandas的名称来自于面板数据(pan
- 开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B与vllm实现推理加速的正确姿势(一)
开源技术探险家
开源模型-实际应用落地#人工智能自然语言处理语言模型深度学习
一、前言在当今人工智能技术迅猛发展的时代,各类人工智能模型如雨后春笋般不断涌现,其性能的优劣直接影响着应用的广度与深度。从自然语言处理到计算机视觉,从智能安防到医疗诊断,AI模型广泛应用于各个领域,人们对其准确性、稳定性和高效性的期望也与日俱增。在此背景下,DeepSeek模型的出现为行业带来了新的曙光。DeepSeek团队开发的DeepSeek-R1-Distill-Qwen-7B模型,利用蒸馏
- Diffusion--人工智能领域的革命性技术
油泼辣子多加
专业名词解释人工智能
在人工智能领域,“diffusion”一词通常指的是“扩散模型”(DiffusionModels),其全称为“DenoisingDiffusionProbabilisticModels”(DDPMs)。扩散模型是一类生成式模型,它通过逐步去噪的方式,从随机噪声中生成高质量的数据,近年来在图像、音频、视频等多个领域取得了显著进展。1.发展历史扩散模型的概念源于物理学中的扩散过程,即粒子在介质中的随机
- python中keras_Python深度学习——keras(一)
weixin_39534321
python中keras
神经网络的核心组件是层(layer),它是一种数据处理模块,可以看成是一个数据过滤器。进去一些数据,出来的数据变得更加有用(吃进去的是草,挤出来的是奶)。大多数深度学习,都是将若干个简单的层给链接起来,实现渐进式的数据过滤,也就是数据蒸馏(过滤到一定程度就等同于蒸馏)首先来看一个数字识别的案例(1)读取训练集和测试集fromkeras.datasetsimportmnist#加载keras中的mn
- 探索2025年的编程新趋势:技术、工具与未来展望
桂月二二
wasm人工智能前端
随着2025年的到来,编程技术领域依旧在高速发展。一些新兴的技术方向、工具和方法正在悄然改变开发者的日常实践。如果您是一名开发者,无论是资深还是初入门道,跟上这些趋势将让您的技能保持前沿,并为职业发展打下坚实基础。本文将从多个维度深入探讨当前最值得关注的编程技术,希望为您的技术提升带来启发。一、AI驱动的编程辅助工具人工智能已成为程序开发的重要组成部分。以下是几款2025年值得关注的AI驱动编程工
- 基于Hexo的主题Fluid搭建Github博客
qq742234984
计算机githubgitnpmnode.jshexo
公众号:数学建模与人工智能基于Hexo的主题Fluid搭建Github博客一、Github配置1.安装Git2.部署本地Git与Github连接(SSH)二、node.js安装和环境配置1.安装node.js2.查看安装是否成功(版本号)3.配置环境变量三、下载Hexo并配置fluid主题1.下载Hexo2.配置fluid主题1.安装fluid2.配置fluid3.更新部署博客页面4.部署到git
- 基于BiGRU的预测模型及其Python和MATLAB实现
追蜻蜓追累了
机器学习深度学习cnnlstm神经网络gru回归算法
##一、背景在当今快速发展的数据驱动的时代,尤其是在自然语言处理(NLP)、时间序列预测、语音识别等任务中,深度学习技术的应用已经变得越来越普遍。传统的机器学习算法往往无法很好地捕捉数据中的时序信息和上下文关系,因此深度学习中的循环神经网络(RNN)逐渐成为解决这一问题的重要工具。RNN能够处理序列数据,但它们在长序列数据的学习中存在梯度消失和梯度爆炸的问题。为了解决这些问题,长短期记忆网络(LS
- 关于双塔模型的简单介绍
eso1983
python算法推荐算法
双塔模型是一种常用于推荐系统和信息检索等领域的深度学习架构,其核心思想是将用户和物品分别映射到不同的向量空间,通过计算两个向量的相似度来预测用户对物品的偏好或相关性。1.python示例使用python语言来简单示例一下实现过程如下:importtensorflowastffromtensorflow.keras.layersimportInput,Dense,Embedding,Concaten
- DeepSeek在协同过滤和深度学习技术中的应用场景
python算法(魔法师版)
深度学习人工智能
DeepSeek作为一个集成多种先进技术的平台,利用协同过滤和深度学习技术在多个领域实现了创新应用。以下是一些具体的场景和示例,展示了这些技术如何被应用于实际问题中。一、推荐系统电子商务协同过滤:在电商平台中,协同过滤用于根据用户的历史行为(如购买记录、浏览历史等)推荐相关商品。基于用户的相似性或项目的相似性来生成个性化推荐。Python深色版本fromsurpriseimportDataset,
- 一篇文章了解AI大神何凯明
Ai知识精灵
人工智能
何凯明(KaimingHe)是一位在国际计算机视觉和深度学习领域享有盛誉的科学家。以下是对他的一些详细介绍:个人背景:何凯明出生于中国,后赴美国深造。他分别在2007年和2011年在清华大学获得学士和博士学位,专业是电子工程。职业经历:在完成博士学位后,何凯明加入了微软亚洲研究院(MicrosoftResearchAsia)。2015年,他加入了FacebookAIResearch(FAIR),成
- 【自我修炼】 大疆技术总监对于大学生学习机器人工程师路线建议 ( 大一 篇)
2401_89323952
学习机器人
很多朋友私信问我对机器人和人工智能感兴趣,该怎么展开学习。最近稍微有点空,我写写我的看法。两年前,我在知乎回答如何定义「机器人」?YY硕的回答中试图给机器人做出一个比较仔细的定义,我觉得机器人和人工智能最大的区别在于是否要和物理世界进行交互。今年初在另一篇知乎回答里对机器人或人工智能的研究会帮助我们更好的了解人类自己吗?-YY硕的回答我说到传感器是和物理世界交互的基础。后来,我又在知乎回答有哪些与
- 【C++】C++回调函数基本用法(详细讲解)
米码收割机
C/C++c++php开发语言
博__主:米码收割机技__能:C++/Python语言公众号:测试开发自动化【获取源码+商业合作】荣__誉:阿里云博客专家博主、51CTO技术博主专__注:专注主流机器人、人工智能等相关领域的开发、测试技术。一文详解C++回调函数目录一文详解C++回调函数1.什么是回调函数?2.为什么需要回调函数3.回调函数的应用场合4.举例说明5.高级回调方式1.什么是回调函数?回调函数可以被简单地理解为:A函
- DeepSeek 详细使用教程
神探阿航
计算机产业科普与思考大模型人工智能
1.简介DeepSeek是一款基于人工智能技术的多功能工具,旨在帮助用户高效处理和分析数据、生成内容、解答问题、进行语言翻译等。无论是学术研究、商业分析还是日常使用,DeepSeek都能提供强大的支持。本教程将详细介绍DeepSeek的各项功能及使用方法。2.注册与登录注册:访问DeepSeek官网(https://www.deepseek.com)。点击“注册”按钮。填写邮箱地址、设置密码,并完
- 基于深度学习的物体分割技术:从理论到实践
人工智能_SYBH
深度学习人工智能神经网络机器学习lstm
1.引言物体分割(ObjectSegmentation)是计算机视觉中的一项核心任务,其目标是将图像中的不同物体或区域分离出来,通常分为语义分割和实例分割两种类型。随着深度学习的迅猛发展,尤其是卷积神经网络(CNN)的应用,物体分割技术已取得了显著的进展。它被广泛应用于医学影像分析、自动驾驶、视频监控、机器人感知等领域。在本篇博客中,我们将深入探讨基于深度学习的物体分割技术,介绍其发展历程、核心原
- 人工智能第2章-知识点与学习笔记
想拿高薪的韭菜
人工智能学习笔记
结合教材2.1节,阐述什么是知识、知识的特性,以及知识的表示。人工智能最早应用的两种逻辑是什么?阐述你对这两种逻辑表示的内涵理解。什么谓词,什么是谓词逻辑,什么是谓词公式。谈谈你对谓词逻辑中的量词的理解。阐述谓词公式的解释的含义。介绍谓词公式表示知识的一般步骤,阐述谓词逻辑表示知识的优点与局限性。什么是知识表示的产生式,请详细阐释产生式和谓词逻辑蕴涵式的差异。什么是产生式系统,请详细阐述产生式系统
- 微软推出GRIN-MoE:开创专家路由新范式
OpenCSG
microsoft
前沿科技速递在人工智能领域,模型的性能和可扩展性一直是研究的热点。微软最近推出的GRIN-MoE(Gradient-InformedMixture-of-Experts)模型,以其独特的架构和显著的性能表现,正引领着AI技术的前沿,特别是在编码和数学任务上展现出强大的能力。GRIN-MoE的发布标志着企业级应用中AI技术的又一次飞跃,旨在提升处理复杂任务的效率和准确性。来源:传神社区01模型简介G
- 动手学PyTorch建模与应用:从深度学习到大模型
王国平
pytorch人工智能数据分析python数据挖掘
在人工智能时代,机器学习技术日新月异,深度学习是机器学习领域中一个全新的研究方向和应用热点,它是机器学习的一种,也是实现人工智能的必由之路。深度学习的出现不仅推动了机器学习的发展,而且促进了人工智能技术的革新,已经被成功应用在语音识别、图像分类识别、地球物理、大语言模型等领域,具有巨大的发展潜力和价值。本书是一本带领读者快速学习PyTorch并将其运用于深度学习建模方向的入门指南,重点介绍了基于P
- Vue和Vue-Element-Admin(十):HTML和CSS快速学习笔记
A叶子叶
#Vue与Web开发vue.jshtmlcss
目录html标签分类网页布局盒子模型浮动定位css标签选择flex布局transform转换Vue开发tipsless和scssVScode常用插件后端语言框架很多,Java适合企业级应用(规范且稳定),Go适合高并发场景(比如云上产品),Python框架(bottle,tornado,django)简单且快速,也天然适合数据分析场景,PHP适合快速建站,前端变化小,所见即所得,因此抽空记录下学习
- AI浪潮下程序员的职业转型与技术进阶之路
nbsaas-boot
人工智能
一、引言1.1研究背景与意义在科技飞速发展的当今时代,人工智能(AI)无疑是最为耀眼的技术领域之一。从早期简单的专家系统到如今复杂的深度学习模型,AI技术经历了从理论探索到广泛应用的巨大跨越,正以前所未有的速度改变着我们的生活和工作方式。近年来,AI技术取得了一系列突破性进展。以GPT系列为代表的大型语言模型,展现出强大的自然语言处理能力,能够实现文本生成、对话交互、代码编写等多种任务。根据《20
- TensorFlow实现卷积神经网络CNN
红叶骑士之初
Tensorflow
一、卷积神经网络CNN简介卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取
- 大数据(一)MaxCompute
胖当当技术
架构云计算odps学习大数据
一、引言作者后面会使用MaxCompute,所以在进行学习研究,总会有一些疑问产生,这里讲讲作者的疑问和思路二、介绍MaxCompute(原名ODPS-OpenDataProcessingService)是阿里云提供的大数据处理平台,专门用于批量数据存储和大规模并行计算。它广泛应用于数据分析和处理任务,为企业级数据处理提供高效的解决方案。下面是MaxCompute的一些主要功能和应用场景:大规模数
- DeepSeek的出现对全球GPT产业产生的冲击
不要em0啦
机器学习gpt
引言近年来,人工智能技术的迅猛发展推动了自然语言处理(NLP)领域的革命性进步。特别是以GPT(GenerativePre-trainedTransformer)系列模型为代表的大规模预训练语言模型,已经在全球范围内引发了广泛关注和应用。然而,随着技术的不断演进,新兴的GPT模型如DeepSeek的出现,正在对全球GPT产业产生深远的影响。本文将从技术、市场、应用场景和产业生态等多个维度,深入探讨
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag