- Django 模型
wjs2024
开发语言
Django模型Django模型是Django框架的核心组件之一,它用于定义应用程序的数据结构。在Django中,模型是Python类,通常继承自django.db.models.Model。每个模型类代表数据库中的一个表,模型类的属性对应表中的字段。1.创建模型创建Django模型非常简单。首先,你需要定义一个继承自django.db.models.Model的类,然后在类中定义模型字段。例如,
- 本地部署DeepSeek-R1 1.5B
狂笑韦恩
大模型deepseek
第一步,下载ollama:ollama然后安装ollama然后打开windowspowershell然后输入ollamarundeepseek-r1:1.5b等待ollama下载完模型,就是可以使用了ollamarundeepseek-r1:1.5bpullingmanifestpullingaabd4debf0c8…89%▕████████████████████████████████████
- MVC 模式与javaEE三层架构
剥包谷
javajavaWeb-mvc三层架构
MVC设计模式mvc这种设计模式,不光运用于Web领域,而且也能用于非Web领域;可以特指一种表现层设计模式,不限于Java语言;JavaWeb应用中应用的最广泛的设计模式便是MVC模式,目前的主流Web框架大多也是基于MVC设计模式所编写的。MVC模式主要分为以下三个基础模块:Model模型:主要负责、javaBean封装数据、业务逻辑以及数据库的交互View视图:主要用于显示数据和提交数据Co
- DeepSeek R1 Ollama本地化部署全攻略:三步实现企业级私有化大模型部署
Coderabo
DeepSeekR1Ollama
前言Ollama作为当前最受欢迎的本地大模型运行框架,为DeepSeekR1的私有化部署提供了便捷高效的解决方案。本文将深入讲解如何将HuggingFace格式的DeepSeekR1模型转换为Ollama支持的GGUF格式,并实现企业级的高可用部署方案。文章包含完整的量化配置、API服务集成和性能优化技巧。—一、基础环境搭建1.1系统环境要求操作系统:Ubuntu22.04LTS或CentOS8+
- 如何更改Jupyter保存位置、路径
nebula-AI
jupyteridepython
前言Jupyter的文件默认保存在C盘的文档中,而本人习惯将文件都放在其它盘,故将Jupyter的保存位置更改到E盘。配置:Anaconda3(64-bit)中的jupyternotebook具体步骤一:找到配置文件在开始菜单栏中找到Anaconda3文件夹,打开AnacondaPrompt在打开的命令行窗口输入命令jupyternotebook--generate-config按y回车确定配置文
- Spark 任务与 Spark Streaming 任务的差异详解
goTsHgo
spark-streaming分布式大数据sparkstreaming大数据分布式
Spark任务与SparkStreaming任务的主要差异源自于两者的应用场景不同:Spark主要处理静态的大数据集,而SparkStreaming处理的是实时流数据。这些差异体现在任务的调度、执行、容错、数据处理模式等方面。接下来,我们将从底层原理和源代码的角度详细解析Spark任务和SparkStreaming任务的差别。1.任务调度模型差异1.1Spark任务的调度模型Spark的任务调度基
- 【python】在【机器学习】与【数据挖掘】中的应用:从基础到【AI大模型】
小李很执着
杂乱无章机器学习数据挖掘python人工智能语言模型
目录一、Python在数据挖掘中的应用1.1数据预处理数据清洗数据变换数据归一化高级预处理技术1.2特征工程特征选择特征提取特征构造二、Python在机器学习中的应用2.1监督学习分类回归2.2非监督学习聚类降维三、Python在深度学习中的应用3.1深度学习框架TensorFlowPyTorch四、Python在AI大模型中的应用4.1大模型简介4.2GPT-4o实例五、实例验证5.1数据集介绍
- DeepSeek点燃国产大模型斗志,RAG等核心技术被重估
量子位
原创关注前沿科技量子位黑马DeepSeek-R1的崛起,给外国网友上演了一场来自东方的震撼。一边,OpenAI和Claude都破了大防,一个声讨“窃取”,一个嘲讽“落后”,两家水火不容的对手竟然以这种戏剧性的方式,鲜有地达成了一致。另一边,微软、亚马逊等云服务厂商,甚至英伟达都开启了“真香”模式,你追我赶地在自家云平台上线DeepSeek-R1。但不管破防还是真香,DeepSeek-R1都已经成为
- spark和python的区别_Spark入门(Python)
weixin_39934257
spark和python的区别
Spark是第一个脱胎于该转变的快速、通用分布式计算范式,并且很快流行起来。Spark使用函数式编程范式扩展了MapReduce模型以支持更多计算类型,可以涵盖广泛的工作流,这些工作流之前被实现为Hadoop之上的特殊系统。Spark使用内存缓存来提升性能,因此进行交互式分析也足够快速(就如同使用Python解释器,与集群进行交互一样)。缓存同时提升了迭代算法的性能,这使得Spark非常适合数据理
- Unet 改进:在encoder和decoder间加入TransformerBlock
听风吹等浪起
AI改进系列transformer图像分割Unet
目录1.TransformerBlock2.Unet改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.TransformerBlockTransformerBlock是Transformer模型架构的基本组件,广泛应用于机器翻译、文本摘要和情感分析等自然语言处理任务。TransformerBlock是一个由两个子组件组成的构建块:多头注意力机制和前
- 开源LLMs导览:工作原理、顶级LLM列表对比
万俟淋曦
SomeInsights人工智能AI生成式人工智能大模型LLMchatgpt大语言模型
机器人、人工智能相关领域news/events(专栏目录)本文目录一、开源LLM是什么意思?二、开源LLM如何工作?2.1预训练2.2代币化2.3开源LLM的微调2.4输入编码2.5训练与优化2.6推理三、开源LLM对组织的好处3.1增强的数据安全和隐私3.2节约成本3.3减少供应商依赖性3.4代码透明度四、哪种LLM模式最好?4.1BERT4.2LLaMA(LargeLanguageModelM
- 揭秘大语言模型:什么是LLM大模型?
AGI-杠哥
程序人生兼职副业web安全语言模型人工智能自然语言处理
前言自从去年chatgpt横空出世以来,它火爆也让大语言模型这个词变的很流行,到底什么是大语言模型,今天从初学者的角度介绍一下大语言模型的基本概念、组成部分和基本工作流程等。下面的介绍中如果涉及到一些专业术语不太理解,也没关系,只要有一个感性认识即可,毕竟我们不打算造车,只要做到自己部署开源大模型的时候,不至于脸盲就可以了。一、大语言模型特点和基本组成大语言模型(LargeLanguageMode
- 【3D目标检测】YOLO3D 基于图像的3D目标检测算法
BILLY BILLY
YOLOv8系列3d目标检测YOLO
参考文档:https://ruhyadi.github.io/project/computer-vision/yolo3d/代码:https://github.com/ruhyadi/yolo3d-lightning本次分享将会从以下四个方面展开:物体检测模型中的算法选择单目摄像头下的物体检测神经网络训练预测参数的设计模型训练与距离测算1.物体检测模型中的算法选择物体检测(ObjectDetect
- MySQLDBA修炼之道-开发篇(一)
滔_GY
MySQLDBA修炼之道-读书笔记数据库oraclemysql
三、开发基础1.数据模型1.1关系数据模型介绍关于NULL如果某个字段的值是未知的或未定义的,数据库会提供一个特殊的值NULL来表示。NULL值很特殊,在关系数据库中应该小心处理。例如查询语句“select*fromemployeewhere绩效得分绩效得分>85;”就不能查询出绩效得分是未知的(NULL)的数据。关于key和索引key常指表中能唯一标识一笔记录的字段(属性)或多个字段的组合。现实
- Encoder-only decoder-only encoder-decoder大模型的区别
阿牛牛阿
aiopencv人工智能AIGCchatgpt
1.Encoder-Only架构-定义:仅包含编码器部分,主要用于处理输入数据而不生成输出。-适用任务:文本分类、情感分析、命名实体识别等。-优点:能够更好地理解输入文本的语义和上下文信息,适合需要特征提取的任务。-缺点:无法直接生成文本输出。-代表模型:BERT、RoBERTa、ALBERT等。2.Decoder-Only架构-定义:仅包含解码器部分,通常用于序列生成任务。-适用任务:文本生成、
- 【软件工程】-- 期末考试题含答案(二)(考前必看、看完不挂科)
四月天行健
大学课程期末试题软件工程p2plinq
试题一选择题1、具有风险分析的软件生命周期模型是( C )。A.瀑布模型 B.喷泉模型 C.螺旋模型 D.增量模型2、软件工程的基本要素包括方法、工具和(A)。A. 过程
- 【AI知识点】三种不同架构的大语言模型(LLMs)的区别
AI完全体
AI知识点人工智能语言模型自然语言处理机器学习深度学习注意力机制自注意力机制
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】在自然语言处理(NLP)中,预训练语言模型(LLMs,LargeLanguageModels)通常基于不同的架构,如仅编码器的模型(Encoder-only)、编码器-解码器的模型(Encoder-Decoder),以及仅解码器的模型(Decoder-only)。这三种架构有着显著的区别,主要体现在功能、适用任务和性能上。下面从架构、功能
- Python软体中使用Scikit-learn库训练简单线性回归模型
清水白石008
Python题库pythonpythonscikit-learn线性回归
Python软体中使用Scikit-learn库训练简单线性回归模型1.引言作为数据科学家和机器学习从业者,我们经常需要处理各种类型的数据,并从中提取有价值的信息。其中,线性回归是最基础也是最常用的机器学习算法之一。它可以帮助我们预测连续型目标变量,在很多实际应用场景中都有广泛应用,比如房价预测、销量预测等。在本文中,我将使用Python的Scikit-learn库,介绍如何训练一个简单的线性回归
- Unity FBX导出系统源码:WRP FBX Exporter完整解析
Kay Lam
本文还有配套的精品资源,点击获取简介:UnityFBX模型导出系统是游戏开发中重要工具,它支持3D模型数据在不同平台和软件间以FBX格式进行交换。WRPFBXExporter源码提供自定义模型导出功能,允许开发者根据项目需求优化模型拓扑、UV坐标和骨骼绑定等。此源码涵盖了模型数据的读取、转换、优化和写入过程,便于开发者创建高效、精确的导出设置。源码附带使用说明文档,帮助用户快速集成和定制。此外,作
- 自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数
qwe352633
python
importtorchimportnumpyasnpimporttorch.nnasnnfromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_scoredata=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1
- FBX模型格式和FbxSDK
tw_devin
工作fbx
可参考:(1)编程知识汇总--3D模型文件的通用格式:FBX(2)FbxSDK使用总结(3FBXSDK快速简笔(基本))(1)的话主要是一些基础,(2)应该是个提升所以说主要看(1)就行(1)中的话主要是看以下3篇:首先可以先看:FBX、DAE模型的格式、导入与骨骼动画,先了解FBX格式,并且给了示例代码结合着理解其次可以看:基于FBXSDK的FBX模型解析与加载-(一),先对FBXSDK有个认识
- NXOPEN C++ 参数化设计系列
天涯Skyline
NXOPENC++参数化设计系列专栏c++
NXOPENC++参数化设计系列部件属性操作篇:NXOpenC++API为NX软件的二次开发提供了强大的工具,特别是在参数化设计方面。通过对部件(Part)属性的操作,开发者可以实现更加灵活和高效的设计流程。在参数化设计中,部件属性属于产品的标准属性,是通过模型或图纸传递数据的重要媒介。部件属性篇将会大家带来关于部件属性新增,修改,删除,匹配、锁定等系列化的操作及相关代码展示。前言NXOpenC+
- MixRec: Heterogeneous Graph Collaborative Filtering
UnknownBody
Recommendation人工智能
本文是深度学习相关文章,针对《MixRec:HeterogeneousGraphCollaborativeFiltering》的翻译。MixRec:异构图协同过滤摘要1引言2前言3方法4评估5相关工作6结论摘要对于现代推荐系统来说,使用低维潜在表示来嵌入用户和基于他们观察到的交互的项目已经变得司空见惯。然而,许多现有的推荐模型主要是为粗粒度和同质交互而设计的,这限制了它们在两个关键维度上的有效性。
- LearnLM: Improving Gemini for Learning
UnknownBody
LLMDaily语言模型人工智能自然语言处理
本文是LLM系列文章,针对《LearnLM:ImprovingGeminiforLearning》的翻译。LearnLM:提升Gemini的学习能力摘要1引言2建模3人类评价设计4结果5结论摘要今天的生成式人工智能系统默认情况下会呈现信息,而不是像人类导师那样让用户参与学习服务。为了解决这些系统的广泛潜在教育用例,我们将注入教学行为的挑战重新定义为一种教学指导,其中培训和评估示例包括描述后续模型中
- 【python】利用 GridSearchCV 和 SVM 进行学生成绩预测
码银
支持向量机机器学习人工智能
在机器学习领域,寻找最优模型参数是一个重要的步骤,它直接影响模型的泛化能力和预测准确性。本文将通过一个具体案例介绍如何使用支持向量机(SVM)和网格搜索(GridSearchCV)来预测学生的成绩,并通过调整参数来优化模型性能。数据集:公众号“码银学编程”后台回复:学生成绩-SVM前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家:前言–人工智能教程引言学生的成绩预测
- 从MySQL到NoSQL:分析传统关系型数据库与NoSQL数据库的协同
哎 你看
数据库mysqlnosql
引言数据库是一个系统,用来管理和存储数据的地方。数据在数据库中以一种结构化的方式组织,这样能更容易地查询和处理数据。关系型数据库是基于关系模型的数据库,它将数据存储在不同的表中,每个表都有各自的独一无二的主键。表与表之间通过共享的数据项相互关联。像MySQL,Oracle,SQLServer,PostgreSQL等都是关系型数据库。关系型数据库非常适合存储结构化的数据。结构化的数据是按照预定义的模
- Node.js 的底层原理
阿芯爱编程
面试js技巧网络前端javascript
Node.js的底层原理1.事件驱动和非阻塞I/ONode.js基于ChromeV8引擎,使用JavaScript作为开发语言。它采用事件驱动和非阻塞I/O模型,使其轻量且高效。通过libuv库实现跨平台的异步I/O,包括文件操作、网络请求等。2.单线程事件循环Node.js使用单个线程来处理所有请求,通过事件循环机制来管理并发。事件循环不断检查是否有待处理的事件或回调函数,并依次执行它们。这种模
- NOSQL和MySQL的区别
小小懒懒
nosqlmysql数据库
NoSQL和MySQL是两种不同类型的数据库,它们在数据模型、架构、查询语言和使用场景等方面存在一些区别。数据模型:MySQL是一种关系型数据库,使用表格和结构化的数据模型,数据存储在行和列中,需要定义表的结构和关系。NoSQL数据库采用非关系型数据模型,不要求严格的表结构和预定义的模式,可以存储各种形式的非结构化数据,如文档、键值对、列族、图形等。架构:MySQL通常采用集中式的架构,数据存储在
- 2025美赛美国大学生数学建模竞赛C题思路分析完整论文(45页)(含模型,可运行代码,运行结果)
小文数模
2025美国大学生数学建模竞赛2025美赛数学建模C数学建模pythonmatlab
2025美赛数学建模竞赛C题思路分析完整论文目录摘要一、问题重述二、问题分析三、模型假设四、模型建立与求解4.1问题14.1.1问题1思路分析4.1.2问题1模型建立4.1.3问题1样例代码(仅供参考)4.1.4问题1样例代码运行结果(仅供参考)4.2问题24.2.1问题2模型建立分析4.2.2问题2模型建立4.2.3问题2样例代码(仅供参考)4.2.4问题2样例代码运行结果(仅供参考)4.3问题
- SARIMA介绍
能源革命
技术能源算法能源
SARIMA模型,即季节性自回归积分移动平均模型(SeasonalAutoregressiveIntegratedMovingAverageModel),是一种用于处理和预测具有明显季节性变化的时间序列数据的统计模型。它是ARIMA模型的一种扩展,通过引入额外的参数来捕捉时间序列中的季节性模式。SARIMA模型的基本结构SARIMA模型的基本结构包括以下几个关键组成部分:p:非季节自回归项的阶数,
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。