- 错误moduleNotFoundError: No module named 'matplotlib'
逆着tensor
tensorflow2.0学习tensorflow
错误ModuleNotFoundError:Nomodulenamed‘matplotlib’问题tensorflow2.0中jupyternotebook编写线性回归例子,出现ModuleNotFoundError:Nomodulenamed'matplotlib’错误解决办法好了,重新加载程序,已经可以用了。
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 新浪财经App喜娜AI助手通过大模型登记,已上线AI摘要和个股公告AI解读
量子位
3月14日,官方发布的信息显示,新浪财经App喜娜AI助手近日已通过北京市生成式人工智能服务登记。目前,喜娜AI助手已上线两项创新功能:喜娜AI摘要和个股公告AI解读。这两项功能旨在通过先进的人工智能技术,提升用户对财经资讯和上市公司公告的理解与分析效率,这标志着AI技术在信息服务领域的又一重大突破。喜娜AI摘要:快速提炼财经资讯核心要点AI时代,资讯信息迎来爆炸性增长,用户每天都要面对海量资讯,
- 基于Puppeteer与Selenium的跨浏览器自动化测试全攻略——从环境搭建到实战优化,万字详解自动化测试落地
追寻向上
selenium测试工具
自动化测试的价值与工具选型为什么需要自动化测试?效率提升:减少重复人工操作,回归测试耗时降低80%精准覆盖:支持高频次、多场景、多设备验证质量保障:避免人为疏忽导致的漏测问题Puppeteer与Selenium的互补性Puppeteer:专精Chrome生态,适用于高性能截图、动态渲染、复杂交互场景Selenium:支持多浏览器(Firefox/Safari/Edge),适合跨平台兼容性测试协同方
- 打造城市二手房分析与可视化系统+聚类分析+58爬虫+线性回归
OverlordDuke
聚类算法数据可视化爬虫线性回归算法
打造城市二手房分析与可视化系统+聚类分析+58爬虫+线性回归利用数据实现全面分析数据分析与可视化功能创新的聚类分析功能结语在如今房地产市场日益复杂的背景下,对于投资者、购房者和市场分析师来说,了解市场动态并做出明智的决策至关重要。基于此,我们开发了一款基于Python的城市二手房分析与可视化系统,为用户提供了强大的工具,帮助他们深入了解当地房地产市场。利用数据实现全面分析我们的系统利用爬取的58同
- 基于传感器数据的城市空气质量预测与污染源分类
云端.代码农夫CloudFarmer
分类数据挖掘人工智能
项目名称:基于传感器数据的城市空气质量预测与污染源分类创新点:结合时间序列预测(回归)与污染源分类(多标签分类),使用公开API获取实时数据。项目目标预测未来6小时的空气质量指数(AQI)。根据传感器数据判断可能的污染源类型(如工业排放、交通尾气、扬尘等)。数据集来源数据获取:通过开放API实时抓取(如OpenAQ、AirNow或国内公开的城市空气质量平台)。特征示例:PM2.5、PM10、SO2
- 常见的数学统计模型
若木胡
数学模型
以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:1.参数模型(ParametricModels)假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。1.1线性回归模型数学形式:(y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\epsilon)应用:预测连续型目标变量(如房价预测)。特点:简单、可解释性强,假
- 金融领域股票价格预测:线性回归原理、实现与应用
ZhShy23
python机器学习入门实战#机器学习#Python学习金融线性回归机器学习
金融领域股票价格预测:线性回归原理、实现与应用一、线性回归原理线性回归是一种用于建立自变量和因变量之间线性关系的统计模型。在股票价格预测中,我们可以将一些可能影响股票价格的因素(如成交量、市场指数等)作为自变量,股票价格作为因变量,通过线性回归模型来建立它们之间的关系。线性回归的基本方程为:[y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_nx_n+\ep
- KV 缓存简介
dev.null
AI缓存
以下是关于KV缓存(Key-ValueCache)的简介,涵盖其定义、原理、作用及优化意义:1.什么是KV缓存?KV缓存是Transformer架构(如GPT、LLaMA等大模型)在自回归生成任务(如文本生成)中,用于加速推理过程的核心技术。其本质是:在生成序列时,缓存历史token的Key和Value矩阵,避免重复计算,从而显著减少计算量。2.为什么需要KV缓存?传统自注意力计算的问题在生成第t
- rstudio检验多重共线性代码
十三木
机器学习人工智能
在Rstudio中,你可以使用vif()函数来检验多重共线性。例如,假设你已经建立了一个线性回归模型,并将它保存在一个变量model中。你可以使用如下代码来检验多重共线性:library(car)vif(model)这会返回每个自变量的方差膨胀因子(VIF),如果VIF较大(通常超过5或10),则可能存在多重共线性。你可以使用这些信息来确定是否需要删除某些自变量或使用其他方法来处理多重共线性。
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- 机器学习线性回归学习心得_线性回归为机器学习的初学者解释
weixin_26750481
机器学习python人工智能逻辑回归深度学习
机器学习线性回归学习心得Datasciencewiththekindofpoweritgivesyoutoanalyzeeachandeverybitofdatayouhaveatyourdisposal,tomakesmart&intelligentbusinessdecisions,isbecomingamust-havetooltounderstandandimplementinyouror
- 扫盲系列--Web3智能合约+Solidity简介
「已注销」
前端框架
前言这几天web3智能合约这个概念,频繁映入我的眼帘。web3.0这个概念我听说过,核心特征是去中心化、开放性、隐私保护和数据所有权回归个人。Web1.0是信息浏览时代,Web2.0是用户参与和社交网络时代,Web3.0是去中心化与智能化时代。在Web3.0这一新的互联网架构下,用户不再仅仅是内容的消费者,更是自己数字身份和数据的拥有者。Web3.0旨在构建一个更加透明、安全且高效的信息网络。我对
- 从零精通机器学习:线性回归入门
吴师兄大模型
0基础实现机器学习入门到精通机器学习线性回归人工智能python算法回归开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 如果我想成为一名大数据和算法工程师,我需要学会哪些技能,获取大厂的offer
红豆和绿豆
杂谈大数据算法
成为一名大数据和算法工程师并获取大厂Offer,需要掌握一系列核心技能,并具备丰富的项目经验与扎实的理论基础。以下是详细的技能要求和建议:---###**1.数学与理论基础**-**数学知识**:掌握线性代数、微积分、概率论和统计学,这些是设计和理解算法的基础。-**机器学习理论**:深入理解常见机器学习算法(如线性回归、逻辑回归、决策树、随机森林、SVM、K-means等),了解其原理、优缺点及
- core-v-verif系列之cva6 cva6.py (5)
CDerL
core-v-verif
cva6.pycva6.py文件是一个用于CORE-VCVA6项目的RISC-V随机指令生成器的回归测试脚本。它负责设置、编译和运行RISC-V指令集模拟器(ISS)和RTL模拟器的测试。以下是主要功能及其作用:SeedGen类:生成测试迭代的伪随机种子。get_generator_cmd:根据提供的模拟器和配置文件设置编译和模拟指令生成器的命令。parse_iss_yaml:解析ISS的YAML
- 人工智能技术篇*卷(三)
code_stream
#人工智能人工智能
接下来,我们在神经网络方面继续展开神经网络多层感知机(MLP)解决问题:多层感知机是一种基本的前馈神经网络,可用于解决分类和回归问题。它通过多个神经元层的非线性变换,能够学习复杂的非线性关系,对数据进行分类或预测连续值。例如,在手写数字识别中,它可以从数字图像的像素数据中学习到特征模式,从而判断该数字是0-9中的哪一个;在房价预测中,根据房屋的面积、房间数量等特征预测房价。案例:以手写数字识别为例
- 【sklearn 05】sklearn功能模块
@金色海岸
sklearn人工智能python
sklearn功能模块分类:识别某个对象属于那个类别回归:预测与对象相关联的连续值属性聚类:将相似对象自动分组降维:减少要考虑的随机变量的数量模型选择:比较、验证、选择参数和模型预处理:特征提取和归一化
- 【sklearn 03】逻辑回归、决策树、支持向量机
@金色海岸
sklearn逻辑回归决策树
逻辑回归、决策树、支持向量机-逻辑回归logisticsregression(逻辑回归)算法是经典的分类算法,基本思想是构造一个概率的拟合函数。决策树决策树的基本思想是根据样例去推断其背后的树形知识表征支持向量机支持向量机SVM(supportvectormachine)的基本思想是寻找最大的间隔的分割超平面。离分割超平面最近的这些样本点称为支持向量机
- 请编写一个Python程序,实现WOA-CNN-BiLSTM鲸鱼算法优化卷积双向长短期记忆神经网络多输入单输出回归预测功能。
2301_81121233
算法神经网络pythonmongodbstormzookeeperspark
实现一个基于鲸鱼优化算法(WOA)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)的多输入单输出回归预测功能是一个复杂的任务,涉及到多个步骤和组件。由于完整的实现会非常冗长,我将提供一个简化的框架和关键部分的代码示例,帮助你理解如何实现这个功能。请注意,这个示例不会包含所有细节,比如数据集的准备、鲸鱼优化算法的具体实现(WOA是一个元启发式算法,需要单独实现或引用现有库),以及CNN-Bi
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- 书籍-《深度生成模型(第二版)》
书籍:DeepGenerativeModeling作者:JakubM.Tomczak出版:Springer编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《深度生成模型(第二版)》01书籍介绍本书是关于生成式AI背后模型的第一本全面著作,经过彻底修订,涵盖了所有主要类别的深度生成模型,包括混合模型、概率电路、自回归模型、基于流的模型、潜在变量模型、生成对抗网络(GANs)、混合模型、基于得分的
- 人工智能直通车系列24【机器学习基础】(机器学习模型评估指标(回归))
浪九天
人工智能直通车开发语言python机器学习深度学习神经网络人工智能
目录机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)2.均方根误差(RootMeanSquaredError,RMSE)3.平均绝对误差(MeanAbsoluteError,MAE)4.决定系数(CoefficientofDetermination,R2)机器学习模型评估指标(回归)1.均方误差(MeanSquaredError,MSE)详细解释均方误差是回归问
- 软件测试工程师面试题(含答案)
美团程序员
自动化测试软件测试软件测试面试软件测试软件测试面试面试职场和发展
面试题列表1、自我介绍,涉及工作经历答:基本信息+擅长测试方向+个人突出亮点+以往工作经历等等。2、在公司中测试的流程是什么答:测试流程:需求评审>测试计划>测试计划>测试方案>编写用例>执行用例>回归测试>提交缺陷报告>提交测试报告3、举例一个项目,在项目中做了什么答:可以聊聊做了性能、自动化、工具开发,测试平台开发、功能等自己擅长的地方。4、如何提升测试效率,如何保障测试质量答:测试人员应该从
- 从零开始学机器学习——构建一个推荐web应用
努力的小雨
机器学习机器学习前端人工智能
首先给大家介绍一个很好用的学习地址:https://cloudstudio.net/columns今天,我们终于将分类器这一章节学习完活了,和回归一样,最后一章节用来构建web应用程序,我们会回顾之前所学的知识点,并新增一个web应用用来让模型和用户交互。所以今天的主题是美食推荐。美食推荐Web应用程序首先,请不要担心,本章节并不会涉及过多的前端知识点。我们此次的学习重点在于机器学习本身,因此我们
- 新手村:数据预处理-异常值检测方法
嘉羽很烦
机器学习机器学习
机器学习中异常值检测方法一、前置条件知识领域要求编程基础Python基础(变量、循环、函数)、JupyterNotebook或PyCharm使用。统计学基础理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。机器学习基础熟悉监督/无监督学习、分类、聚类、回归等基本概念。数据预处理数据清洗、特征缩放(标准化/归一化)、数据可视化(Matplotlib/Seaborn)。二、渐进式学习
- 支持向量机 (SVM) 算法详解
sssugarr
机器学习算法详解pythonsvm支持向量机算法sklearn
支持向量机(SVM)算法详解支持向量机(SupportVectorMachine,SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM特别适合高维数据,并且在处理复杂非线性数据时表现出色。本文将详细讲解SVM的原理、数学公式、应用场景及其在Python中的实现。什么是支持向量机?支持向量机的目标是找到一个最佳的决策边界(或称超平面)来最大限度地分隔不同类别的数据点。对于线性可分的数据,SV
- 侍魂2出招表
小魚資源大雜燴
游戏
霸王丸奥义旋风烈斩:↓↘→+斩奥伪旋风烈斩:↓↘→+踢奥义弧月斩:→↙↓↘+斩奥义烈震斩:→↓↘+踢酒壶攻击:↓↙←+A(破)天霸凄煌斩:→↘↓↙←→+A秘奥义天霸封神斩:↘←↙↓↘→←↓↙+B+C(变)Q版变身:→↘↓↙←→←+B娜可露露风之刃:↓↘→+斩流风斩:↓↙←+斩胜利之刃:←↙↓+斩飞鹰攻击:→↘↓↙←+斩飞鹰吊挂:↓↙←+C吊挂攻击:吊挂状态下任意键飞鹰急袭:吊挂状态下↙、↓或↘+任
- 新手村:线性回归-实战-波士顿房价预测
嘉羽很烦
机器学习线性回归算法回归
新手村:线性回归-实战-波士顿房价预测前置条件阅读:新手村:线性回归了解相关概念实验目的1.熟悉机器学习的一般流程2.掌握基础的数据处理方法3.理解常用的回归算法教学例子:预测房价(以波士顿房价数据集为例)本次实验,你将使用真实的波士顿房价数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念和评价方法,请通过机器学习建立回归模型,即:Y=θ0+θ1×X1+θ2×X2+θ3×X3+⋯+θ
- 新手村:混淆矩阵
嘉羽很烦
机器学习机器学习
新手村:混淆矩阵一、前置条件知识点要求学习资源分类模型基础理解分类任务(如二分类、多分类)和常见分类算法(如逻辑回归、决策树)。《Hands-OnMachineLearningwithScikit-Learn》Python基础熟悉变量、循环、函数、列表、字典等基本语法。《PythonCrashCourse》或在线教程(如Codecademy)scikit-learn基础掌握模型训练、预测、评估的基
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象