- python基础-推荐8个常用的Python GUI图形界面开发框架
小尤笔记
数据库pythonPython基础开发语言爬虫
在Python中,GUI(图形用户界面)开发框架为开发者提供了创建交互式应用程序的工具。以下是八款常用的PythonGUI图形界面开发框架及其简要代码讲解:CSDN大礼包:《2024年最新全套学习资料包》免费分享1.Tkinter简介:Tkinter是Python的标准GUI库,它提供了一个简单的方式来创建窗口、对话框等GUI元素。Tkinter被整合到当前所有主要操作系统的Python安装程序中
- DiffuEraser: 一种基于扩散模型的视频修复技术
扫地僧985
音视频
视频修复算法结合了基于流的像素传播与基于Transformer的生成方法,利用光流信息和相邻帧的信息来恢复纹理和对象,同时通过视觉Transformer完成被遮挡区域的修复。然而,这些方法在处理大范围遮挡时常常会遇到模糊和时序不一致的问题,这凸显了增强生成能力模型的重要性。近期,由于扩散模型在图像和视频生成方面展现出了卓越的性能,已成为一种重要的技术。在本文中,我们介绍了DiffuEraser,这
- 一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
struggle2025
人工智能数据挖掘目标检测深度学习自然语言处理语言模型集成学习
一、GenBIAI代理介绍(文末提供下载)github地址:https://github.com/Canner/WrenAI本文信息图片均来源于github作者主页在WrenAI,我们的使命是通过生成式商业智能(GenBI)使组织能够无缝访问数据,从而彻底改变商业智能。我们的目标是通过先进的AI驱动型解决方案、可组合数据框架和语义智能来打破数据洞察的障碍,使每个团队成员都能自信地做出更快、更智能的
- Fooocus AI绘画神器兼具Midjourney和Stable Diffusion强大功能,win版本整合包一键运行N卡版(8g内存4g显卡可操作硬盘空间要500g),省去繁琐的安装(A卡改参数)
struggle2025
AI作画midjourneystablediffusion人工智能计算机视觉图像处理
开源AI绘画工具Fooocus使用指南最近,在Github上一款全新的开源AI绘画工具Fooocus横空出世,引发了众多AI绘画爱好者的关注。它不仅能够像StablediffusionWebUI一样部署到本地免费使用,还具备midjourney那般便捷的操作界面,为用户带来了极其出色的创作体验。Foocus重新思考了图像生成器的设计。该软件是离线的,开源的,免费的,同时,类似于许多在线图像生成器,
- AI在虚拟试衣中的应用:革新在线购物体验
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟试衣中的应用:革新在线购物体验关键词:虚拟试衣,增强现实,在线购物,深度学习,图像识别,人工智能,用户交互1.背景介绍1.1问题由来随着电子商务的迅猛发展,在线购物已经成为人们日常生活的一部分。然而,由于无法亲身试穿,在线购物体验在满足用户个性化需求方面仍存在诸多不足。传统的网页图片展示和文字描述难以真实传达衣物的质地、颜色和尺寸。因此,虚拟试衣技术应运而生,成为电商平台上提升用户体验的
- AI在虚拟客户服务中的应用:提供24_7支持
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI在虚拟客户服务中的应用:提供24/7支持关键词:虚拟客服,自然语言处理(NLP),聊天机器人,对话系统,深度学习,用户支持,自动化1.背景介绍随着互联网和移动互联网的迅速发展,客户服务成为各大企业提升竞争力的重要环节。但传统的客服模式存在诸多痛点:人力成本高、响应时间慢、工作时间有限等。在企业面临全时用户需求和竞争压力日益加剧的当下,如何以更低的成本、更快的速度、更高效的资源利用率,持续提供优
- Java动态代理:原理与实现
AllenBright
#Java基础java开发语言
在Java编程中,代理模式是一种常见的设计模式,它允许我们通过一个代理对象来控制对另一个对象的访问。代理模式的主要目的是在不改变原始类代码的情况下,增强或修改其行为。Java中的代理分为静态代理和动态代理两种。本文将重点介绍动态代理,包括其概念、实现方式以及背后的原理。1.什么是动态代理?动态代理是一种在运行时动态生成代理类的机制。与静态代理不同,静态代理需要手动编写代理类,而动态代理则通过Jav
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- Android 绘图工具与实战(具体例子)
Chasing stars
Androidcanvas
绘图工具与实战参考链接:https://www.runoob.com/w3cnote/android-tutorial-drawable-tool.html三大绘图工具:1)Paint(画笔):就是画笔,用于设置绘制风格,如:线宽(笔触粗细),颜色,透明度和填充风格等直接使用无参构造方法就可以创建Paint实例:Paintpaint=newPaint();我们可以通过下述方法来设置Paint(画笔
- .NET使用C#设置Excel单元格数值格式
.netc#excel数字表格
设置Excel单元格的数字格式是创建、修改和格式化Excel文档的关键步骤之一,它不仅确保了数据的正确表示,还能够增强数据的可读性和专业性。正确的数字格式可以帮助用户更直观地理解数值的意义,减少误解,并且对于自动化报告生成、财务计算等应用场景来说,精确的格式控制也是保证数据准确性和一致性的重要保障。在.NET平台上,我们可以使用C#轻松完成Excel单元格的数字格式设置,实现自动化处理。本文将介绍
- 试了下Cursor,感觉程序员工种危险了
java
大家好,我是汤师爷~今年8月份,AI编程工具Cursor在开发者社区彻底火了。在Twitter平台上,Cloudflare副总裁分享了一段视频,展示了一个令人震惊的案例。他年仅8岁的女儿,仅用CursorAI这款工具,在短短45分钟内,就成功构建了一个功能完整的聊天机器人。最近,另一个案例进一步证实了AI编程的潜力。内容创作者、UP主@AI进化论-花生,完全没有编程经验,仅凭CursorAI编程工
- 《C++ 赋能 K-Means 聚类算法:开启智能数据分类之旅》
c++c#
在当今数字化浪潮汹涌澎湃的时代,人工智能无疑是引领科技变革的核心驱动力之一。而在人工智能的广袤天地中,数据分类与聚类作为挖掘数据内在价值、揭示数据潜在规律的关键技术手段,正发挥着前所未有的重要作用。K-Means聚类算法,作为数据聚类领域的经典之作,以其简洁高效的特性而备受瞩目。当我们将目光聚焦于C++这一强大而高效的编程语言时,会发现它与K-Means聚类算法的结合犹如天作之合,能够为数据处理与
- 《解锁AI黑科技:数据分类聚类与可视化》
程序猿阿伟
人工智能科技分类
在当今数字化时代,数据如潮水般涌来,如何从海量数据中提取有价值的信息,成为了众多领域面临的关键挑战。人工智能(AI)技术的崛起,为解决这一难题提供了强大的工具。其中,能够实现数据分类与聚类,并以可视化形式展现的AI技术,正逐渐成为各行业数据分析和决策的核心力量。数据分类与聚类:AI的核心技能数据分类是将数据划分到预先定义好的类别中,就像把图书馆里的书籍按照不同学科分类摆放,方便读者查找。比如在垃圾
- 《数据可视化新高度:Graphy的AI协作变革》
程序猿阿伟
信息可视化人工智能数据分析
在数据洪流奔涌的时代,企业面临的挑战不再仅仅是数据的收集,更在于如何高效地将数据转化为洞察,助力决策。Graphy作为一款前沿的数据可视化工具,凭借AI赋能的团队协作功能,为企业打开了数据协作新局面,重新定义了团队在数据领域的协同方式。智能角色分配,适配专长促协作Graphy利用AI算法,根据团队成员过往在数据项目中的表现、技能标签以及参与任务的类型,分析出每个成员在数据可视化流程中的优势。比如,
- 第05章 17 Contour 过滤器介绍与例子
捕鲸叉
VTK编程学习信息可视化VTK
vtkContourFilter是VTK(VisualizationToolkit)中的一个关键类,用于从输入数据生成等值线或等值面。它是基于阈值的过滤器,可以从标量字段中提取等值线或等值面。vtkContourFilter的核心功能是根据用户指定的值生成等值线或等值面,并将其表示为多边形网格。vtkContourFilter的主要功能等值线/等值面生成:根据用户指定的等值(通常是标量值)生成等值
- React中的key属性有什么作用,如何使用?
JJCTO袁龙
reactreact.jsjavascript前端
React中的key属性:作用与使用指南在React中,key属性是一个非常重要的概念,尤其在构建动态列表时,它的作用不容小觑。理解key的使用对提高应用性能、优化渲染以及避免潜在的渲染问题都有很大的帮助。本文将详细探讨React中的key属性,为什么它是必需的以及如何正确使用它。1.key的作用在React中,当我们使用map或类似的方法生成列表时,key属性帮助React识别哪些元素已更改、添
- 【深度学习】Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,论文
XD742971636
深度学习机器学习深度学习transformer人工智能
必读文章:https://blog.csdn.net/qq_37541097/article/details/121119988SwinTransformer:HierarchicalVisionTransformerusingShiftedWindows论文:https://arxiv.org/abs/2103.14030代码:https://github.com/microsoft/Swin-
- 【15-聚类分析入门:使用Scikit-learn进行K-means聚类】
是阿牛啊
机器学习回归预测大数据挖掘kmeans聚类python机器学习人工智能sklearn性能优化
文章目录前言K-means聚类的原理Scikit-learn中的K-means实现安装与导入生成模拟数据应用K-means聚类可视化聚类结果选择K的值总结前言 聚类分析是一种无监督学习方法,用于将数据集中的样本分组成若干个簇(cluster)。K-means是最广泛使用的聚类算法之一,其核心思想是将数据点分配到K个簇中,使得每个点到其簇中心的距离之和最小。在本文中,我们将介绍如何使用Scikit
- 本地部署DeepSeek 多模态大模型Janus-Pro-7B
网络安全我来了
人工智能AI人工智能
本地部署Janus-Pro-7B的完整指南在今天,AI无处不在,它深刻改变了我们与世界的互动方式。是否曾想过,如何能够将强大的多模态大模型,如DeepSeek的Janus-Pro-7B,部署到本地使其为你所用呢?本篇文章将带你逐步了解Janus-Pro-7B的特点和部署过程,并解决你可能遇到的各种问题。1.Janus-Pro-7B简介1.1模型特点与创新在众多AI模型中,Janus-Pro-7B犹
- kafka下载安装、简易实例、遇到的错误解决
诸葛名义
kafkalinuxhadoopzookeeper
目录kafk实例错误解决WARN[ConsumerclientId=consumer-1,groupId=console-consumer-94437]Connectiontonode-kafka启动:Nativememoryallocation(mmap)failedtomap1073741824bytesforcommittingreservedmemorkafka下载地址:https://m
- 如何本地部署DeepSeek?DeepThink R1 本地部署全攻略:零基础小白指南。
白马区块Crypto100
SolanaAI套利策略交易人工智能deepseekDeepSeekAI助手
离线运行AI,免费使用OpenAI级别推理模型本教程将手把手教你如何在本地部署DeepThinkR1AI模型,让你无需联网就能运行强大的AI推理任务。无论你是AI新手还是资深开发者,都可以轻松上手!目录DeepThinkR1介绍安装Ollama(AI运行环境)下载并安装DeepThinkR1模型在终端运行DeepThinkR1使用Chatbox浏览器UI交互创建你的专属AI伙伴进阶玩法:离线AI编
- AI大模型基于LLM的Agent架构图解
AI产品经理
人工智能深度学习语言模型学习
Agent定义Agent是什么?Agent是一种能够自主决策、采取行动以达到某种目标的实体。AIAgent的确定义:基于人工智能(尤其是大模型)技术,能够感知和理解环境,并采取行动以完成目标的智能实体。Agent能干什么?AIAgent主要依托LLM模型和具体的业务场景来调用相应的工具来完成任务目标,智能化程度和行业贴合度会更明显。典型案例有什么?智能核保应用,如果解决方案搭载AIAgent能力,
- 三分钟了解阿里云和腾讯云的DDoS防御策略
jisuyunzzc
云服务器
三分钟了解阿里云和腾讯云的DDoS防御策略DDoS攻击,即分布式拒绝服务(DDoS:DistributedDenialofService)攻击,是一种通过恶意流量导致受害者服务瘫痪的网络攻击行为。中小型网站站长在其父伍奇遭到DDoS攻击时,经常不知所措。其实,如果我们使用的是云服务器,是可以借助云服务器提供的DDoS防御能力来进行防御处理的。例如,针对DDoS攻击,阿里云推出了DDoS黑洞策略,腾
- 使用 Python 的 LSTM 进行股市预测
无水先生
数据分析深度学习人工智能综合pythonlstm开发语言
目录一、说明二、为什么需要时间序列模型?三、下载数据3.1从Alphavantage获取数据3.1从Kaggle获取数据3.3数据探索3.4数据可视化四、将数据拆分为训练集和测试集五、数据标准化六、通过平均进行一步预测6.1标准平均值6.2指数移动平均线6.3如果指数移动平均线这么好,为什么还需要更好的模型?6.4预测未来不止一步七、LSTM简介:预测未来的股票走势7.1数据生成器7.2数据增强7
- 什么是LLM?看这一篇就够了!
Python程序员罗宾
人工智能语言模型AIGC自然语言处理
前言自从2022年12月ChatGPT横空面世以来,AI领域获得了十足的关注和资本,其实AI的概念在早些年也火过一波,本轮AI热潮相比于之前的AI,最大的区别在于:生成式。本文主要介绍大语言模型(LargeLanguageModel,简称LLM)。大语言模型介绍什么是大语言模型(LLM)通过海量文本训练的、能识别人类语言、执行语言类任务、拥有大量参数的模型,称之为大语言模型。GPT、LLaMA、M
- Linux(7)Ubuntu20.04 arm64安装Docker
一歲抬頭
《Linux系统开发入门定制》linuxdockerubuntu
1.更换源vi/etc/apt/sources.listdebhttps://mirror.tuna.tsinghua.edu.cn/ubuntu-ports/focalmainrestricteduniversemultiversedebhttps://mirror.tuna.tsinghua.edu.cn/ubuntu-ports/focal-updatesmainrestricteduniv
- 【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘灰色预测SVR人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- 【技海登峰】Kafka漫谈系列(一)Kafka服务集群的核心组件
阿阿阿安
【独家专栏】知识星球同步专享优质好文kafka分布式java
【技海登峰】Kafka漫谈系列(一)Kafka服务端的核心组件一.Broker完整的Kafka服务是集群Cluster结构,其由多个Kafka服务节点组成,每个物理节点即称为Broker,在实际部署中,每个Broker节点都是一个Kafka实例的服务进程。Broker是Kafka实际的运行单元,负责请求处理、数据同步、存储主题/分区/消费偏移量等元数据信息,多个Broker分布式部署在不同机器上,
- DeepSeek Janus-Pro:多模态AI模型的突破与创新
大模型之路
大模型(LLM)Deepseekdeepseekr1deepseekLLM强化学习
近年来,人工智能领域取得了显著的进展,尤其是在多模态模型(MultimodalModels)方面。多模态模型能够同时处理和理解文本、图像等多种类型的数据,极大地扩展了AI的应用场景。DeepSeek(DeepSeek-V3深度剖析:下一代AI模型的全面解读)公司最新发布的Janus-Pro模型,正是在这一领域的一次重大突破。本文将深入探讨Janus-Pro的技术特点、创新之处以及其在多模态任务中的
- 微软为 Copilot+ PC 提供经过提炼的 DeepSeek R1 模型
吴脑的键客
人工智能microsoftcopilot
DeepSeek征服了移动世界,现在正在向Windows扩展,令人惊讶的是,它得到了微软的全力支持。昨天,这家软件巨头将DeepSeekR1模型添加到其AzureAIFoundry,以允许开发人员使用它测试和构建基于云的应用程序和服务。今天,微软宣布将R1的精简版本引入Copilot+PC。精简模型将首先提供给搭载骁龙X芯片的设备、搭载英特尔酷睿Ultra200V处理器的设备,然后是搭载AMDRy
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比