- 初探机器学习与力学研究的交叉领域
faderbic
机器学习人工智能深度学习
目录关于如何踏入机器学习领域机器学习与力学研究的交叉方向1.使用机器学习加速有限元求解2.结合有限元计算和机器学习预测复杂材料结构与力学性能的关系3.结构健康检测4.疲劳寿命预测总结关于如何踏入机器学习领域因为我本科的专业是力学,所以当我开始关注机器学习领域时,首先考虑的是机器学习和力学的交叉领域。对于很多对人工智能感兴趣的朋友,想加入人工智能的潮流却不知道从何学起,我提供一个思路,我认为将自己学
- [NIPST AI]对抗性机器学习攻击和缓解的分类和术语
Anooyman
人工智能网络安全人工智能大语言模型网络安全安全
原文link:https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-2e2025.pdfIntroduction人工智能(AI)系统在过去几年中持续全球扩展。这些系统正在被众多国家开发并广泛部署于各自的经济体系中,人们在生活的许多领域都获得了更多使用AI系统的机会。本报告区分了两大类AI系统:预测型AI(PredictiveAI,PredAI)和生成型A
- 骗子太猖獗了,打着摩根士丹利何晓斌名义带股民进入虚假宝丰能源节能减排碳交易市场,大量股民被骗真相曝光
墨守成法
为什么明明跟老师对过视频,确认是本人,怎么还会被骗了?你有没有想过一个名人大咖怎么会有时间给你们一对一视频,其次我来给大家揭露一下,这个套路AI换脸骗局是一种利用人工智能技术,通过替换视频中的人脸来伪造身份或进行诈骗的行为。你的账户“余额”是真的吗?为什么不能提现呢?其实都是骗子给你的一串数字而已!这些新平台打着“低风险”、“高收益”、“慈善公益投票”等噱头先让投资人尝到甜头再通过恶意操作将投资人
- 智慧水库信息化系统建设产品需求文档V2.0
小赖同学啊
testTechnologyPrecious物联网
智慧水库信息化系统建设产品需求文档1.引言1.1文档目的本文档旨在明确智慧水库信息化系统的建设需求,为系统设计、开发和实施提供全面依据,确保系统功能满足水库管理业务需求,提升水库管理的智能化水平和决策效率。1.2背景介绍传统水库管理面临数据采集不及时、分析手段有限、决策依赖经验等问题,难以应对复杂多变的水文情势和日益增长的管理需求。随着物联网、大数据、人工智能等技术的发展,智慧水库建设成为必然趋势
- 黄仁勋链博会演讲实录:脱掉皮衣,穿上唐装,中文开场
黄仁勋一度尝试用中文开场,他说,“我在美国长大,学到了很多汉语。”他表示,像DeepSeek、阿里巴巴、MiniMax、百度,他们开发的产品都是世界级的,推动了全球人工智能的发展。中国的开源AI是全球进步的催化剂,以至于全世界各个行业都有机会加入到AI革命当中。7月16日,黄仁勋身着唐装出席了第三届链博会,在此之前,他身着标志性皮衣出席多个场合活动。在此之前,英伟达官宣获得H20芯片对华的出口许可
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 【人工智能之深度学习】6. 卷积核工作原理:从边缘检测到特征抽象的逐层演进(附可视化工具与行业实战代码)
AI_DL_CODE
人工智能深度学习卷积核特征提取卷积神经网络边缘检测特征可视化
摘要:卷积核是卷积神经网络(CNN)的核心组件,其通过局部感受野与参数共享机制实现高效特征提取。本文从数学本质出发,揭示卷积操作的空域-频域对偶性:空域卷积等价于频域乘积(F{f∗g}=F{f}⋅F{g}F\{f*g\}=F\{f\}⋅F\{g\}F{f∗g}=F{f}⋅F{g}),解释边缘检测核(Sobel、Laplacian)的频域响应特性。通过特征可视化实验表明,CNN特征呈现逐层抽象规律:
- 颠覆未来:创新代码引领人工智能与量子计算深度融合
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3人工智能量子计算
摘要在信息时代飞速演进的背景下,人工智能与量子计算正以前所未有的速度互相融合,推动着科技边界的不断拓展。本文回顾了经典算法的智慧,展示了前沿深度学习模型的构建,并通过量子电路设计探讨了创新代码的可能性,为探索未来科技变革提供了全新视角。1.引言当前,科技创新正处于高速迭代的关键阶段,传统计算方法与新型技术的交汇处正成为研究热点。人工智能的发展已渗透到各行各业,而量子计算的崛起则为解决复杂计算问题提
- 【大模型】结构化提示词:让AI高效完成复杂任务的“编程语言”
JosieBook
AI/大数据/云计算人工智能
文章目录前言:提示词一、不同提示词写作方法对比进阶技巧对比表实战组合策略二、三板斧:精准撰写提示词的黄金法则角色设定:为AI精准定位任务描述:明确行动指南输出要求:规范成果呈现三、魔法棒:零基础也能用的“AI需求翻译机”四、结构化:把提示词写成“可插拔的乐高”五、分治法:把“庞然大物”拆成可并行的小任务前言:提示词在人工智能时代,提示词(Prompt)已成为连接人类意图与AI能力的核心媒介。优质的
- 人工智能视频分析系统人员离岗报警设计方案
liuhu21
人工智能云计算运维
一、方案概述近几年安防监控技术不断的进步,特别是在人工智能推出之后。安防监控系统结合人工智能算法做到了许多以前无法做到的事情。就比如我们今天要说的离岗检测报警监控系统。以前我们只能通过人工值守监控室的方式,通过人的判断去观看现场人员在岗情况。如今有了离岗检测监控系统,系统可以自动监测现场人员是否在岗、离岗时间以及离岗人数等等。这样,大大减少了监控室值班人员的工作量,同时相较人工监管提升了工作效率。
- AI新纪元:2025年深度学习技术突破与行业应用全景
像素笔记
杂谈人工智能深度学习ai自动驾驶工业数字化转型未来趋势技术创新
2025年,人工智能技术迎来爆发式增长,大模型、生成式AI和多模态技术持续突破,人形机器人量产元年正式开启,自动驾驶商业化进程加速,工业数字化转型全面铺开。这些进展不仅重塑了技术边界,更在多个行业创造了实际价值,推动AI从实验室走向产业化。本文将深入剖析2025年深度学习与AI领域的核心技术突破、行业应用案例及未来发展趋势,为技术从业者提供全面视角。一、深度学习核心技术突破:大模型、生成式AI与多
- 三篇AAAI顶级论文带你一键搞懂多模态!
关注gongzhonghao【计算机sci论文精选】!拿捏更多顶会顶刊发文资讯随着人工智能技术的飞速发展,多模态学习逐渐成为研究热点。多模态技术能够整合文本、图像、语音等多种模态的信息,为人工智能的应用带来了更丰富的语义理解和更强大的交互能力。此外,多模态技术在视频和语言任务中的应用也取得了显著进展。这些技术不仅提升了模型的性能,还为人工智能在更多领域的应用提供了新的可能性。今天小图给大家精选3篇
- 进阶向:基于Python的智能客服系统设计与实现
智能客服系统开发指南系统概述智能客服系统是人工智能领域的重要应用,它通过自然语言处理(NLP)和机器学习技术自动化处理用户查询,显著提升客户服务效率和响应速度。基于Python的实现方案因其丰富的生态系统(如NLTK、spaCy、Transformers等库)、跨平台兼容性以及易于集成的特点,成为开发智能客服系统的首选。系统架构系统核心包括两个主要功能模块:1.API集成模块负责连接各类外部服务,
- 计算机视觉产品推荐,个性化推荐:人工智能中的计算机视觉、NLP自然语言处理和个性化推荐系统哪个前景更好一些?...
这个问题直接回答的话可能还是有着很强的个人观点,所以不如先向你介绍一些这几个领域目前的研究现状和应用情况(不再具体介绍其中原理)你自己可以斟酌一下哪方面更适合自己个性化推荐。一.所谓计算机视觉,是指使用计算机及相关设备对生物视觉的一种模拟个性化推荐。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样[1]。现在人工智能的计算机视觉主要研究
- AI如何塑造下一代网络安全防御体系
weishi122
web安全人工智能网络人工智能网络安全威胁检测行为分析漏洞挖掘
AI如何塑造下一代网络安全防御体系随着网络威胁日益复杂化,传统安全措施已难以应对。人工智能(AI)正通过创新解决方案重塑网络安全格局。本文将探讨AI如何推动网络安全革命,并分析实施过程中的关键挑战。日益严峻的威胁形势到2025年,网络犯罪预计将造成全球10.5万亿美元损失。传统防御手段已无法应对快速演变的威胁,这正是AI发挥关键作用的领域。人工智能:新一代数字卫士AI能实时分析海量数据,在威胁发生
- 【国内超大型智能算力中心建设白皮书 2024】
AI大模型 lose and dream
人工智能开源git开源软件githubgitlab开放原子
文末有福利!智算中心建设通过领先的体系架构设计,以算力基建化为主体、以算法基建化为引领、以服务智件化为依托,以设施绿色化为支撑,从基建、硬件、软件、算法、服务等全环节开展关键技术落地与应用。一、体系架构(一)总体架构图8智算中心总体架构智能算力中心建设白皮书,重点围绕基础、支撑、功能和目标四大部分,创新性地提出了智算中心总体架构。其中,基础部分是支撑智算中心建设与应用的先进人工智能理论和计算架构;
- 高并发解决方案:SpringBoot+Redis分布式缓存实战
fanxbl957
Web缓存springbootredis
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人高并发解决方案:SpringBoot
- SpringBoot缓存技术全解析:Redis+Caffeine二级缓存架构
fanxbl957
Web缓存springbootredis
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot缓存技术全解析:
- 米信使股票群诈骗真相!郑洪盛国浩盟国一带一路项目就是资金盘不要被骗了!
不成功不收费
讲述:郑洪盛国浩盟国慈善投票被骗无法出金真相!套路太深教你该如何避!!骗子引诱人上当方式很简单:先给你一点甜头尝尝,一开始入金能正常提现,也能赚一点,但当投入更多钱时,你发现你的运气开始变差了。所以,荐股类骗局最大的迷惑性是:给受害人一种假象,你是投资亏损的,而不是被骗的!广大市民对此要提高警惕,如果是还没有投资,千万不要抱有侥幸心理,一定要及时远离!一定不要打草惊蛇低碳项目数字体育,人工智能ai
- 实现大语言模型与应用的无缝对接
meslog
技术分享语言模型microsoft人工智能
在当今人工智能快速发展的时代,大语言模型(LLMs)已经成为众多应用的核心驱动力。然而,如何让这些强大的模型与各种数据源和工具进行有效集成,仍然是一个挑战。ModelContextProtocol(MCP)正是为解决这一问题而设计的开放协议,它标准化了应用程序如何向大语言模型提供上下文信息。本文将介绍MCP的基本概念,并通过C#SDK展示如何实现客户端和服务器端的交互。什么是MCP?ModelCo
- 解决引入TransXNet模块后显存爆炸问题的全面指南
pk_xz123456
算法大数据python机器人数据挖掘深度学习
解决引入TransXNet模块后显存爆炸问题的全面指南前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。1.问题背景与现状分析1.1MF-PSN和TransXNet项目概述MF-PSN(Multi-FeaturePyramidStereoNetwork)是一个基于金字塔特征的多特征立体匹配网络,它通过构建多层次的特征金字塔来处理不同尺度的立体匹配问题
- 人工智能时代下的数据新职业:新兴工作岗位版图研究
司南锤
economics人工智能
目录摘要第一章:AI驱动的数据价值链重构1.1从“沉睡金矿”到“流动的血液”:数据作为核心经济资产的激活1.2知识的新经济学:零边际成本革命1.3AI作为新的“操作系统”:重塑产业竞争格局第二章:基石层:数据准备与质量保障中的角色2.1数据标注与标签领导力:数据标注经理/主管2.2“地面真实”的守护者:AI数据质量专家第三章:技术核心层:构建AI与机器学习全生命周期的工程角色3.1AI生产线架构师
- 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
AIGC零基础入门小白
AI大模型大模型教程人工智能机器学习科技AI大模型AIGCAI教程大模型教程
文章目录引言一、人工智能:从概念到现实1.1人工智能的定义1.2人工智能的发展历史1.3人工智能的分类1.4人工智能的应用二、机器学习:人工智能的核心技术2.1机器学习的定义2.2机器学习的分类2.3机器学习的实现原理2.4机器学习的应用2.5机器学习的示例代码2.6解释代码三、大模型:推动AI前沿发展的关键技术3.1大模型的定义3.2大模型的发展历程3.3深度学习与神经网络3.4大模型的优势与挑
- 现代人工智能综合分类:大模型时代的架构、模态与生态系统
司南锤
economics人工智能分类数据挖掘
目录引言:人工智能的第四次浪潮与新分类的必要性第一节:大型模型范式的基础支柱1.1规模化假说:算力、数据与算法的三位一体1.2“涌现能力”之谜:当“更多”变为“不同”1.3自监督学习(SSL)革命第二节:大型模型的技术分类学2.1Transformer:现代人工智能的架构基石2.2架构分化:一种功能性分类2.3提升效率与规模:专家混合模型(MoE)2.4超越Transformer:下一代架构的探索
- 人工智能入门指南:从基础概念到实际应用
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。https://www.captainbed.cn/north文章目录1.**人工智能的基本概念**1.1什么是人工智能?1.2人工智能的分类2.**人工智能的核心技术**2.1机器学习(MachineLearning)2.1.1机器学习的类型2.1.2机器学习流程2.2深度学习(DeepLearni
- Sequential Thinking:AI深度思考的新范式及其与CoT、ReAct的对比分析
码字的字节
人工智能SequentialCoTReAct
引言:AI深度思考的演进与SequentialThinking的崛起在人工智能技术快速发展的今天,AI模型的思考能力正经历着从简单应答到深度推理的革命性转变。这一演进过程不仅反映了技术本身的进步,更体现了人类对机器智能认知边界的持续探索。早期的大语言模型虽然能够生成流畅的文本,但在处理复杂问题时往往表现出"浅思考"的局限性——答案可能看似合理,却缺乏严谨的推理过程和系统性考量。例如,2022年的一
- 算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《GPT多模态大模型与AIAgent智能体》(跟我一起学人工智能)【陈敬雷编著】【清华大学出版社】GPT多模态大模型与AIAgent智能体书籍本章配套视频课程【陈敬雷】推荐算法系统实战全系列精品课【陈敬雷】文章目录推荐算法系统系列二算法工程师必看!个性化信息流推荐算法系统的架构设计与优化实战指南更多技术内容总结推荐算法系统系列二算
- 【DL经典回顾】激活函数大汇总(四)(Softmax & Softplus附代码和详细公式)
夺命猪头
python机器学习人工智能神经网络numpy
激活函数大汇总(四)(Softmax&Softplus附代码和详细公式)更多激活函数见激活函数大汇总列表一、引言欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数扮演着不可或缺的角色,它们决定着神经元的输出,并且影响着网络的学习能力与表现力。鉴于激活函数的重要性和多样性,我们将通过几篇文章的形式,本篇详细介绍两种激活函数,旨在帮助读者深入了解各种激活函数的
- 基于NanoDet的健身姿势纠正系统开发
YOLO实战营
人工智能NanoDet深度学习计算机视觉ui
1.引言在现代健身行业中,正确的运动姿势至关重要,不仅能提升训练效果,还能预防运动损伤。尤其是在进行一些高强度的力量训练时,如深蹲、俯卧撑等,错误的姿势可能导致肌肉不平衡或关节损伤。传统的健身姿势纠正方式依赖教练的人工指导,但随着人工智能技术的发展,使用计算机视觉和深度学习技术来进行姿势纠正,逐渐成为一种高效且可扩展的解决方案。本文将详细介绍如何基于NanoDet(一个轻量化目标检测模型)开发一个
- Spring AI 概述与功能简介
drebander
AI编程spring人工智能java
SpringAI是一个由Spring团队开发的开源框架,旨在为人工智能(AI)和机器学习(ML)提供一个成熟且高效的开发平台。它将Spring生态系统的设计理念应用于AI开发,尤其强调模块化、可移植性以及简洁的集成。SpringAI提供了丰富的功能,涵盖从AI模型的调用到与数据库的集成等多个方面,帮助开发者构建和管理AI驱动的应用程序。1.SpringAI背景SpringAI的背景源于Spring
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文