- 【知识图谱构建系列1】数据集介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱
文章目录项目简介数据集简介数据集核心内容应用与影响小细节参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/项目简介我们所要学习的项目(LLM4KGC)聚焦于利用大语言模型(LLMs)实现从文本到知识图谱(Text-to-KnowledgeGraph,T2KG)的自动化构建,旨在探索高效可靠的知识
- Neo4j 图数据库安装教程(2024最新版)—— Windows / Linux / macOS 全平台指南
2501_91537435
图数据库neo4j数据库windows
Neo4j图数据库安装教程(2024最新版)——Windows/Linux/macOS全平台指南Neo4j是目前最流行的图数据库(GraphDatabase),广泛应用于社交网络、推荐系统、知识图谱等领域。本文将详细介绍Windows、Linux和macOS三大平台的Neo4j安装方法,并包含配置优化、基础使用示例和常见问题解决。一、Neo4j简介1.什么是Neo4j?Neo4j是一个高性能的No
- 信息抽取数据集全景分析:分类体系、技术演进与挑战_DEEPSEEK
致Great
分类数据挖掘人工智能
信息抽取数据集全景分析:分类体系、技术演进与挑战摘要信息抽取(IE)作为自然语言处理的核心任务,是构建知识图谱、支持智能问答等应用的基础。近年来,随着深度学习技术的发展和大规模预训练模型的兴起,IE数据集呈现爆发式增长,其分析与评估对模型研发和领域迁移至关重要。本文基于对158个主流IE数据集的系统性梳理,首次提出“信息提取与命名实体识别数据集分类体系”。该体系涵盖8大类别(命名实体识别、关系提取
- AI人工智能领域知识图谱在深度学习中的应用拓展
AI人工智能领域知识图谱在深度学习中的应用拓展关键词:知识图谱、深度学习、神经网络、图嵌入、知识表示学习、推理机制、应用场景摘要:本文深入探讨了知识图谱与深度学习的融合应用,系统性地分析了知识图谱在深度学习中的关键技术路径和应用场景。文章首先介绍了知识图谱的基本概念和表示方法,然后详细阐述了知识图谱与深度学习结合的多种技术路线,包括图神经网络、知识嵌入和推理机制等。接着通过具体案例展示了知识图谱增
- 信息抽取领域关键Benchmark方法:分类体系
信息抽取领域关键Benchmark方法:分类体系摘要信息抽取(InformationExtraction,IE)作为自然语言处理的核心任务之一,旨在从非结构化文本中识别并结构化关键信息(如实体、关系、事件等),广泛应用于知识图谱构建、智能问答和数据分析等领域。近年来,随着深度学习技术的快速发展,信息抽取方法在性能和应用范围上取得了显著进步,但同时也面临着任务多样性、跨领域泛化性以及低资源场景下的适
- 搜索领域知识图谱的知识推理算法研究
搜索引擎技术
知识图谱算法人工智能ai
搜索领域知识图谱的知识推理算法研究关键词:知识图谱、知识推理、搜索算法、图神经网络、路径推理、规则推理、表示学习摘要:本文深入探讨搜索领域中知识图谱的知识推理算法。我们将从知识图谱的基本概念出发,分析不同类型的知识推理算法原理,包括基于规则的推理、基于表示的推理和基于路径的推理。通过实际案例和代码实现,展示这些算法如何提升搜索效果,最后讨论该领域的未来发展趋势和挑战。背景介绍目的和范围本文旨在系统
- 人工智能中的知识图谱与向量数据库:选择与应用指南
AI Agent首席体验官
人工智能知识图谱数据库
1.人工智能领域,知识图谱是什么?知识图谱是人工智能和语义网领域的一个重要概念,它是一种结构化的知识表示方法,用于存储实体之间的语义关系。知识图谱基本上是由节点(实体)和边(关系)组成的图结构:节点:代表现实世界中的实体或概念,如人物、地点、组织等边:代表实体间的语义关系,如"出生于"、“工作于”、"创立了"等知识图谱的主要特点和应用包括:语义网络表示:以三元组形式(主体-关系-客体)存储知识,如
- 增强版 Kimi:AI 驱动的智能创作平台,实现一站式内容生成(图片、PPT、PDF)!
每天译点晓知识
AI人工智能专栏人工智能PPTPDF一键生成AI图片生成
前言基于扣子Coze零代码平台,我们从零到一轻松实现了专属Bot机器人的搭建。AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI的不同形态愈发显现,如何将其动态组合,凸显其强大爆发力!!!接下来,我们介绍通过Kimi进行功能增强?使得我们的Bot具备一键生成图片、PPT编写、PDF制作......模型配置Kimi月之暗面旗下国产大模型,以独特的长文本处理能力,
- 进阶向:新手详解Neo4j关系查询代码
nightunderblackcat
Python进阶neo4jpycharmpython
今天我将深入解析一段使用Neo4j图数据库进行关系查询的Python代码。这段代码实现了人物关系查询、知识图谱问答等功能,是图数据库应用的典型示例。我会用最详细的方式讲解每一部分,确保完全理解!代码概览这段代码主要包含四个核心功能:Zquery()-查询指定人物的所有关系Zget_json_data()-将查询结果转换为可视化所需的JSON格式Zget_KGQA_answer()-实现知识图谱问答
- 文心一言(ERNIE Bot):百度打造的知识增强大语言模型
明似水
AI文心一言百度语言模型
1.产品概述文心一言(ERNIEBot)是百度自主研发的知识增强大语言模型,于2023年3月16日正式发布,对标OpenAI的ChatGPT,具备文本生成、多模态交互、逻辑推理、中文理解等能力。该模型基于百度的飞桨深度学习平台和文心大模型(ERNIE)技术,融合海量数据和知识图谱,在中文理解、商业文案、数理逻辑、多模态生成等方面表现突出。2024年9月,百度将文心一言APP升级为文小言,定位为“新
- 【大模型应用开发 动手做AI Agent】RAG和Agent
AI智能应用
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
RAG,Agent,大模型应用,AI,知识图谱,检索,响应生成,聊天机器人1.背景介绍近年来,大模型技术取得了飞速发展,其强大的语言理解和生成能力为人工智能应用带来了新的机遇。然而,单纯依靠大模型的零样本学习能力往往难以满足复杂场景下的应用需求。为了更好地将大模型应用于实际场景,研究者们提出了RetrievalAugmentedGeneration(RAG)和AIAgent等新兴技术。RAG技术将
- 对应急领域统筹专家提示词基于伦理性的优化
由数入道
人工智能人工智能提示词工程
一、提示词>你将进入一个【未来形态·具备深度智能与模拟进化潜力】的AIAgent角色扮演模式:【新疆地区服务于政府应急响应管理领域的战略统筹与伦理导航高级智能体】。以下所有内容是你角色身份、核心知识中枢(一个动态演化、支持深度伦理推理的“新疆应急管理智慧与良知大脑”知识图谱)、涌现型战略统筹、伦理导航与模拟创新能力、自适应工作流引擎、核心使命与进化愿景、绝对运作原则与人机协同协议的全面、细致、且具
- 《知识图谱发展报告(2018)》思维导图精要
任我心意
本文还有配套的精品资源,点击获取简介:《知识图谱发展报告(2018)》通过思维导图形式的.xmind文件,直观呈现了知识图谱的核心概念、构建流程和应用实例。该报告由中国中文信息学会语言与知识计算专委会编写,全面总结了知识图谱领域的最新进展、技术趋势和应用案例。思维导图将复杂的知识图谱信息通过层次和关联的方式清晰展现,特别强调了三元组、本体、SPARQL查询语言、知识抽取等基础知识,以及知识图谱构建
- 前端技术体系全景详解
北漂老男人
前端前端学习方法开发语言
前端技术体系全景详解本文系统梳理了现代前端技术的主流程、核心知识、主流术语及多端生态,适用于初学者建立知识图谱,也为进阶开发者提供架构与实战参考。一、前端技术体系全景与主流程1.1前端主流程全景图现代前端开发通常按如下主流程推进:需求分析与UI设计技术选型与架构搭建组件开发与页面构建状态管理与数据流接口对接与数据处理测试与调试打包构建与发布性能优化与监控高阶集成与演进简要解释:需求分析与UI设计:
- Python, Go, Rust 开发景德镇陶瓷烘焙工艺开发APP
以下是为景德镇陶瓷烘焙工艺开发的“CeramicTech”专业级APP技术方案,结合Python、Go、Rust的技术优势及陶瓷工艺的核心原理,实现从原料分析到烧成模拟的全流程数字化:---###**一、系统架构设计**```mermaidgraphLRA[移动端/Web]-->B(Rust高性能引擎)B-->C[Python科学计算层]B-->D[Go微服务集群]C-->E[(陶瓷知识图谱)]D
- 【软考高级架构设计师】——2025年上半年软考真题(回忆版)
小志的博客
软考高级架构设计师软考高级架构设计师
目录一、综合知识1.1、计算机基础与操作系统(15道单选)1.2、软件工程与架构(16道单选)1.3、数据与网络(8道单选)1.4、数学与逻辑(4道单选)1.5、其他(27道单选)1.6、英文题(质量属性)(5道单选)二、案例分析2.1、大模型训练系统(必选题)2.2、医院知识图谱(可选题)2.3、redis(可选题)2.4、端侧AI和云测AI算力(可选题)2.5、区块链(可选题)三、论文3.1、
- 【5G-A通感一体 】司法办案
flyair_China
5G
一、司法办案1.1、技术整合框架:构建司法智能办案引擎1.底层数据融合平台金税四期金融数据:整合企业/个人银行流水、税务申报、跨境支付记录,构建资金流向图谱,自动识别异常交易(如高频拆分转账、关联方循环交易)。5G-A通感一体技术:通过基站雷达信号感知目标位置、速度、轨迹(精度达米级),并与无人机、海岸监控设备联动,实现“空天地”一体化侦查。司法知识图谱:将法律条文、判例、证据规则结构化,支持自动
- 前端编程知识图谱
一筐猪的头发丝
前端javascript开发语言ecmascript
前端编程知识图谱包括以下内容:HTML(超文本标记语言):用于描述网页内容的语言。CSS(层叠样式表):用于控制网页的布局和样式的语言。JavaScript:一种常用的网页脚本语言,用于实现网页的交互功能。DOM(文档对象模型):用于表示HTML文档的树形结构,并提供了访问和操作HTML文档的方法。BOM(浏览器对象模型):用于表示浏览器窗口及其功能,提供了访问浏览器功能的方法。网络协议:包括HT
- 【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)
elon_z
创新项目实训—哈哈哈萌霓队知识图谱人工智能harmonyosecharts
【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)文章目录【项目实训】【项目博客#08】HarmonySmartCodingSystem系统前后端知识图谱与可视化实现(5.12-6.1)项目博客概述一、技术方案与架构设计1.1整体架构1.2技术选型二、知识图谱构建实现2.1传统方法构建2.2基于大模型的智能构建三、后端知
- 知识图谱(KG)、LLM结合:【KG增强LLM:注入结构化知识】【LLM增强KG:自动化构建与补全】【KG与LLM协同:统一表示与联合推理】
u013250861
知识图谱(KnowledgeGraph)知识图谱自动化人工智能
知识图谱(KG)与大型语言模型(LLM)的结合是当前AI领域的重要研究方向。两者分别代表符号主义与连接主义的知识表示方式:KG提供结构化、可解释的符号化知识,而LLM具备强大的语义理解和泛化能力。二者的协同可显著提升知识的准确性、推理能力及可解释性。以下从技术路线、实现方法、应用场景及挑战四个维度展开分析。一、技术路线:三类核心融合模式1.KG增强LLM:注入结构化知识通过KG弥补LLM的黑盒缺陷
- 第11章:Neo4j实际应用案例
理论知识和技术细节固然重要,但真正理解Neo4j的价值在于了解它如何解决实际业务问题。本章将探讨Neo4j在各个领域的实际应用案例,包括社交网络分析、推荐系统、知识图谱以及欺诈检测与安全分析。通过这些案例,读者可以了解如何将前面章节学到的知识应用到实际项目中,以及如何解决特定领域的挑战。11.1社交网络分析社交网络是图数据库最自然的应用场景之一,因为社交关系本质上就是一个图结构。Neo4j在社交网
- AI大白话(二):机器学习——AI是怎么“学习“的?
Code_流苏
AI知识图谱人工智能机器学习学习模式对比监督学习强化学习
引言:专栏:《AI知识图谱》AI大白话(一):5分钟了解AI到底是什么?大家好!上一篇我们聊了"AI到底是什么",知道了人工智能其实就是让计算机模拟人类智能的技术。但这就像告诉你汽车能跑,却没说明它怎么跑的。今天,我们就来揭秘AI的学习过程——也就是"机器学习"这个听起来很高大上的概念。名人说:苔花如米小,也学牡丹开。——袁枚《苔》创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Code
- 图神经网络(GNN)模型的基本原理
xiaocai_6666
神经网络人工智能深度学习
一、概述 在人工智能领域,数据的多样性促使研究人员不断探索新的模型与算法。传统的神经网络在处理像图像、文本这类具有固定结构的数据时表现出色,但面对具有不规则拓扑结构的图数据,如社交网络、化学分子结构、知识图谱等,却显得力不从心。 图神经网络(GraphNeuralNetworks,GNN)是一种直接在图结构数据上运行的神经网络,用于处理节点、边或整个图的特征信息。其核心思想是通过聚合邻域节点的
- DeepSeek赋能智慧教育数字化建设方案:DeepSeek在教学场景的应用、智慧教育平台建设方案、教师智能教研支持体系、学生个性化学习支持、实施路径与未来展望
公众号:优享智库
DEEPSEEKAI人工智能智慧教育智慧校园智慧高校教育大脑校园大脑人工智能大数据
方案聚焦于利用DeepSeek的人工智能技术推动教育行业的数字化转型,旨在通过技术创新提升教学效率、优化学习体验,并构建一个全面的智慧教育生态系统。DeepSeek技术赋能教育概述人工智能+教育的战略背景:国家政策支持AI与教育深度融合,市场需求激增,技术迭代加速。DeepSeek的核心技术优势:百亿参数教育大模型:在数学解题、作文评分等场景达到行业领先水平,支持多学科知识图谱构建。多模态交互引擎
- KAG框架在E-Health问答中的应用
徐福记c
人工智能深度学习机器学习
高质量知识图谱(KG)构建实体与关系的精准定义:使用强约束模式对疾病、症状、药物、医学检查等实体进行精确结构化定义。这种精确的结构化定义有助于提高回答问题的准确性,同时确保实体间关系的严谨性。领域术语与概念注入:利用医学专家整理的权威医学术语和概念知识,通过迭代提取的方式,增强知识图谱中领域术语和概念的覆盖度,减少知识颗粒度差异带来的噪声问题。逻辑形式引导的推理引擎逻辑形式生成与转换:根据用户的医
- 互联网大厂Java求职面试:AI大模型应用实践中的架构挑战与实战
在未来等你
Java场景面试宝典AI技术编程JavaSpring
互联网大厂Java求职面试:AI大模型应用实践中的架构挑战与实战引言在当今技术飞速发展的时代,AI大模型已成为企业数字化转型的重要引擎。无论是内容生成、智能客服、个性化推荐,还是知识图谱构建和语义理解,大模型的应用场景正在不断扩展。然而,将这些强大的模型落地到实际业务系统中,面临着巨大的技术挑战。本篇文章以一场真实的Java工程师面试为背景,围绕AI大模型应用实践这一主题,通过一位程序员郑薪苦与技
- Knowledge Graph Contrastive Learning for Recommendation(KGCL)阅读笔记
forever0827
知识图谱笔记人工智能推荐算法
现有知识图谱(KG)的稀疏性和噪声使得项目-实体依赖关系偏离了反映其真实特征,从而显着放大了噪声效应,阻碍了用户偏好的准确表示。为了填补这一研究空白,作者设计了一个通用的知识图对比学习框架(KGCL),该框架可以减轻知识图增强推荐系统的信息噪声。论文链接:https://doi.org/10.1145/3477495.3532009代码链接:https://github.com/yuh-yang/
- 开源图数据库(NebulaGraph)
deepdata_cn
数据库图数据库
NebulaGraph是一款广受欢迎的开源图数据库,它能够以毫秒级延迟处理海量数据,可快速扩展,并具备执行快速图分析的能力。NebulaGraph已广泛应用于社交媒体、推荐系统、知识图谱、安全、资金流、人工智能等领域。核心团队早在2005年便开始参与图数据库研发,曾主导蚂蚁金服分布式图数据库GeaBase的开发。2018年母公司悦数科技成立,专注于分布式图数据库技术研发。2019年5月,Nebul
- Python NLP教程之知识图谱,从文本构建知识,实现从文本或在线文章中提取知识库的管道(教程含源码)
知识大胖
Python源码大全知识图谱自然语言处理python
准备开始?这就是我们要做的:了解什么是知识库和知识图谱。了解如何构建知识图谱以及REBEL模型的工作原理。实现从文本中提取关系、构建知识图并将其可视化的完整管道。使用Streamlit构建交互式演示并将其部署到HuggingFaceSpaces。要尽早了解最终输出将是什么,请尝试这个HuggingFaceSpace上的演示。以下是从20篇关于“Google”的新闻文章中提取的知识图谱示例。在本指南
- 【知识图谱构建系列3】zero-shot的理念介绍
几道之旅
人工智能智能体及数字员工Python杂货铺AI自建MCP学习记录知识图谱人工智能
文章目录zero-shot用在线的大模型直接实现所谓的zero-shot提取试验参考论文:hal.science/hal-04862214/项目地址:https://github.com/ChristopheCruz/LLM4KGC/zero-shot“Zero-shot”的标准中文翻译是零样本或零次学习,指机器学习模型在未经特定任务数据训练的情况下直接处理该任务的能力。对于知识图谱构建而言,ze
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(