transformers之SFT和VLLM部署Llama3-8b模型

目录

  • 1. 环境安装
  • 2. accelerator准备
  • 3. 加载llama3和数据
  • 4. 训练参数配置
  • 5. 微调
  • 6. vllm部署
  • 7. Llama-3-8b-instruct的使用
  • 参考

1. 环境安装

pip install -q -U bitsandbytes
pip install -q -U git+https://github.com/huggingface/transformers.git
pip install -q -U git+https://github.com/huggingface/peft.git
pip install -q -U git+https://github.com/huggingface/accelerate.git
pip install trl

2. accelerator准备

import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig


fsdp_plugin = FullyShardedDataParallelPlugin(
    state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),
    optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
)

accelerator = Accelerator(fsdp_plugin=fsdp_plugin)

3. 加载llama3和数据

因为使用的是base模型,所以没有一个严格的提示模板需要遵循。使用的数据集遵循LLama3的模板格式,因此对于使用Llama3聊天格式的下游任务来说应该没问题。如果你使用自己的数据,你可以自定义格式,在下游任务中也使用相同的格式即可。

base_model_id = "meta-llama/Meta-Llama-3-8B"
dataset_name = "scooterman/guanaco-llama3-1k"
new_model = 

你可能感兴趣的:(transformers,NLP,llama,llama3,微调,vllm)