LeetCode: Minimum Path Sum 解题报告

Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

LeetCode: Minimum Path Sum 解题报告

SOLUTION 1:

相当基础的DP题目:

This is a simple DP.
表达式:  D[i][j]: 从左下到本点的最小值
递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j]
初始化:  D[i][j] = grid[i][j].

终止条件:到达终点

 1 // Solution 1: DP

 2     public int minPathSum1(int[][] grid) {

 3         if (grid == null || grid.length == 0 || grid[0].length == 0) {

 4             return 0;

 5         }

 6         

 7         int rows = grid.length;

 8         int cols = grid[0].length;

 9         int[][] D = new int[rows][cols];

10         

11         // This is a simple DP.

12         // 表达式:  D[i][j]: 从左下到本点的最小值

13         // 递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j]

14         // 初始化:  D[i][j] = grid[i][j].

15         for (int i = 0; i < rows; i++) {

16             for (int j = 0; j < cols; j++) {

17                 D[i][j] = grid[i][j];

18                 

19                 if (i == 0 && j != 0) {

20                     D[i][j] += D[i][j - 1];

21                 } else if (j == 0 && i != 0) {

22                     D[i][j] += D[i - 1][j];

23                 } else if (i != 0 && j != 0) {

24                     D[i][j] += Math.min(D[i][j - 1], D[i - 1][j]);

25                 }

26             }

27         }

28         

29         return D[rows - 1][cols - 1];

30     }
View Code

 

SOLUTION 2:

使用DFS + Memory也可以解决问题。当前到终点有2种方式,往右,往下,两种路线,取一个较小的路线就行了。

 1 public class Solution {

 2     // Solution 1: DP

 3     public int minPathSum1(int[][] grid) {

 4         if (grid == null || grid.length == 0 || grid[0].length == 0) {

 5             return 0;

 6         }

 7         

 8         int rows = grid.length;

 9         int cols = grid[0].length;

10         int[][] D = new int[rows][cols];

11         

12         // This is a simple DP.

13         // 表达式:  D[i][j]: 从左下到本点的最小值

14         // 递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j]

15         // 初始化:  D[i][j] = grid[i][j].

16         for (int i = 0; i < rows; i++) {

17             for (int j = 0; j < cols; j++) {

18                 D[i][j] = grid[i][j];

19                 

20                 if (i == 0 && j != 0) {

21                     D[i][j] += D[i][j - 1];

22                 } else if (j == 0 && i != 0) {

23                     D[i][j] += D[i - 1][j];

24                 } else if (i != 0 && j != 0) {

25                     D[i][j] += Math.min(D[i][j - 1], D[i - 1][j]);

26                 }

27             }

28         }

29         

30         return D[rows - 1][cols - 1];

31     }

32     

33     // Solution 2: DFS + memory.

34     public int minPathSum(int[][] grid) {

35         if (grid == null || grid.length == 0 || grid[0].length == 0) {

36             return 0;

37         }

38         

39         int[][] memory = new int[grid.length][grid[0].length];

40         

41         // Bug 1: forget to initilize

42         for (int i = 0; i < grid.length; i++) {

43             for (int j = 0; j < grid[0].length; j++) {

44                 memory[i][j] = -1;

45             }

46         }

47         

48         return dfs(grid, 0, 0, memory);

49     }

50     

51     public int dfs (int[][] grid, int i, int j, int[][] memory) {

52         int rows = grid.length;

53         int cols = grid[0].length;

54         

55         if (i >= rows || j >= cols) {

56             // 表示不可达

57             return Integer.MAX_VALUE;

58         }

59         

60         // The base case: arrive the destination.

61         if (i == rows - 1 && j == cols - 1) {

62             return grid[i][j];

63         }

64         

65         // 已经搜索过的点不需要重复搜索        

66         if (memory[i][j] != -1) {

67             return memory[i][j];

68         }

69         

70         int sum = grid[i][j];

71         

72         // 开始dfs 可能的路径,目前我们只有2种可能

73         sum += Math.min(dfs(grid, i + 1, j, memory), dfs(grid, i, j + 1, memory));

74         

75         // Record the memory

76         memory[i][j] = sum;

77         return sum;        

78     }

79 }
View Code

 

GITHUB:

https://github.com/yuzhangcmu/LeetCode_algorithm/blob/master/dp/MinPathSum_1222_2014.java

你可能感兴趣的:(LeetCode)