- 一起学Hugging Face Transformers(8)- 使用Transformers 库制作一个简易问答系统
做个天秤座的程序猿
HuggingFaceTransformersAutoModelAutoTokenizerTransformerstransformer
文章目录前言一、环境准备二、数据准备三、模型选择与加载四、构建问答系统五、模型评估与优化六、部署问答系统七、实际案例分析总结参考资料前言问答系统是一种能够自动回答用户问题的人工智能应用,在许多领域具有重要的应用价值,如客户服务、教育和医疗等。HuggingFaceTransformers库是一个强大的工具,它提供了许多预训练的自然语言处理模型,简化了构建问答系统的过程。本文将介绍如何使用Huggi
- 利用LangChain的StackExchange组件实现智能问答系统
nseejrukjhad
langchainmicrosoft数据库python
利用LangChain的StackExchange组件实现智能问答系统引言在当今的软件开发世界中,StackOverflow已经成为程序员解决问题的首选平台之一。而LangChain作为一个强大的AI应用开发框架,提供了StackExchange组件,使我们能够轻松地将StackOverflow的海量知识库集成到我们的应用中。本文将详细介绍如何使用LangChain的StackExchange组件
- 基于 LangChain 开发应用程序第三章-储存
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分之前的章节可以查看基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出第三章储存在与语言模型交互时,你可能已经注意到一个关键问题:它们并不记忆你之前的交流内容,这在我们构建一些应用程序(如聊天机器人)的时候,带来了很大的挑战,使得对
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- 从零搭建一个可离线使用的可实时更新扩展信息的智能问答系统 llamaindex&LLama3大模型&RAG
千年奇葩
AI人工智能aillama人工智能llamafactory大模型
之前对一件事很好奇,为什么去年训练的大模型可以回答今天的新闻内容。答案是使用了知识扩展系统。基本原理是把参考答案和问题一同提给大模型,给他充分的参考信息做回复编辑。本文教你完成离线版本的智能问答系统搭建。有问题请直接留言最近在疯狂找下家,本人精通图形渲染和ai,求捞啊!基本架构图讲一下基本运行流程:人工准备数据转为嵌入向量存入数据库并生成索引用户提问流程:用户输入问题在索引数据库中查询匹配度较高的
- Ollama教程——深入解析:使用LangChain和Ollama构建JavaScript问答系统
walkskyer
ollama入门教程langchainjavascript开发语言ollamaAI
ollama入门系列教程简介与目录相关文章:Ollama教程——入门:开启本地大型语言模型开发之旅Ollama教程——模型:如何将模型高效导入到Ollama框架Ollama教程——兼容OpenAIAPI:高效利用兼容OpenAI的API进行AI项目开发Ollama教程——使用LangChain:Ollama与LangChain的强强联合Ollama教程——生成内容API:利用Ollama的原生AP
- 心理健康问答系统-AIGC大模型-小程序制作
阿利同学
小程序制作AIGC小程序问答系统心理健康人工智能小程序制作大模型
制作一个心理健康问答系统的小程序,涉及到多个环节和技术领域。这里将从需求分析、技术选型、开发流程、API调用等方面进行详细说明。一、需求分析与规划在开始任何项目之前,首先需要明确的是你的小程序想要解决什么样的问题,提供哪些功能给用户。对于心理健康问答系统来说,可能的功能包括但不限于:心理健康知识科普用户情绪识别及反馈提供专业心理咨询服务情绪日记记录心理健康测试问卷在线预约心理医生开发技术Sprin
- Cerebras DocChat发布:基于Llama 3构建,DocChat在几小时内完成GPT-4级别的对话问答训练
科技大本营
llama人工智能算法深度学习机器学习
Cerebras发布的DocChat标志着基于文档的对话式问答系统的一个重大里程碑。Cerebras以其在机器学习(ML)和大型语言模型(LLMs)方面的深厚专业知识而闻名,推出了DocChat系列的两个新模型:CerebrasLlama3-DocChat和CerebrasDragon-DocChat。这些模型旨在提供高性能的对话式人工智能,特别是针对基于文档的问答任务,并利用Cerebras的尖
- 保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统
2401_85763803
langchain安全人工智能
保护隐私,释放智能:使用LangChain和Presidio构建安全的AI问答系统在人工智能(AI)飞速发展的今天,AI问答系统已经成为企业与客户互动的重要工具。然而,随之而来的个人数据隐私问题也日益凸显。如何在不泄露用户隐私的前提下,利用AI的强大能力提供智能服务?本文将详细介绍如何使用LangChain和Presidio库构建一个既安全又高效的AI问答系统。一、隐私保护的重要性个人可识别信息(
- 人工智能领域--RAG技术
胡萝卜不甜
机器学习人工智能python学习算法
今天带大家来学习一下RAG技术,尤其在在大模型中应用广泛。一.RAG(RetrievalAugmentedGeneration)检索增强生成RAG,即Retrieval-AugmentedGeneration(检索增强的生成),是一种结合了检索(Retrieval)和生成(Generation)机制的人工智能技术,常用于提升自然语言处理(NLP)任务的性能,尤其是在问答系统、文本摘要、对话系统等领
- 【Python机器学习】NLP概述——聊天机器人的自然语言流水线
zhangbin_237
Python机器学习自然语言处理机器人人工智能python机器学习
构建对话引擎或者聊天机器人所需的NLP流水线类似于某些问答系统。聊天机器人需要4个处理阶段和一个数据库来维护过去语句和回复的记录。这4个处理阶段中的每个阶段都可以包含一个或多个并行或串行工作的处理算法。如下图所示:1、解析:从自然语言文本中提取特征、结构化数值数;2、分析:通过对文本的情感、语法合法度及语义打分,生成和组合特征;3、生成:使用模板、搜索或语言模型生成可能的回复;4、执行:根据对话历
- #LLM入门|Prompt#3.1 第三部分 使用 LangChain 开发应用程序_简介
向日葵花籽儿
LLM入门教程笔记AIGCpromptpythonLLMlangchain人工智能chatgpt
概述如何能够基于ChatGPT搭建一个完整、全面的问答系统,要搭建基于ChatGPT的完整问答系统,除去上一部分所讲述的如何构建PromptEngineering外,还需要完成多个额外的步骤。例如,处理用户输入提升系统处理能力,使用思维链、提示链来提升问答效果,检查输入保证系统反馈稳定,对系统效果进行评估以实现进一步优化等。当ChatGPTAPI提供了足够的智能性,系统的重要性就更充分地展现在保证
- 计算机毕设分享 面向高考招生咨询的问答系统设计与实现(源码+论文)
源码爱鸭
高考毕设毕业设计开源
文章目录0项目说明1项目说明2系统设计3系统功能3.1问答3.2问题模板4实验结果5论文目录6项目工程0项目说明面向高考招生咨询的问答系统设计与实现提示:适合用于课程设计或毕业设计,工作量达标,源码开放1项目说明本系统主要从数据获取,问题分类,问题处理和答案生成以及软件设计四个方面论述自动问答系统的设计与实现。数据获取涉及到网络数据抓取技术,数据库存储与操作,本文使用了python网络爬虫和MyS
- AI问答系统的一般问题
UPUPUPEveryday
人工智能机器学习深度学习
AI对话结果的可信程度AI对话结果的可信程度取决于多个因素。首先,可信度受到AI系统的训练和能力的影响。一个经过充分训练、经过验证的AI系统可能会产生更准确和可靠的对话结果。其次,可信度还取决于对话内容的复杂程度。AI系统在处理简单和直接的问题上可能比处理复杂和抽象的问题更具可信度。此外,可信度还受到语言模型和数据集的质量的影响。如果语言模型具有广泛且准确的数据集作为基础,那么结果的可信度可能会更
- 合槽位填充技术的问答系统构建步骤及其所需的技术和工具
Komorebi_9999
知识图谱问答系统自然语言处理
下面是结合槽位填充技术的问答系统构建步骤及其所需的技术和工具:1.知识图谱构建技术/工具:Neo4j或ArangoDB(图数据库)RDF2Neo(将RDF数据导入Neo4j的工具)D2RQ(将关系型数据库转化为SPARQL端点)模型算法:资源描述框架(RDF)Web本体语言(OWL)2.自然语言处理(NLP)技术/工具:spaCy(用于文本处理、词性标注、命名实体识别等)NLTK或HuggingF
- 【无标题】
Komorebi_9999
知识图谱问答系统自然语言处理
要构建一个基于知识图谱的问答系统,你需要进行以下工作:知识图谱构建:数据采集:从各种来源(如公开数据库、API、网页等)收集与你的领域相关的数据。数据清洗和预处理:清洗数据,去除重复、错误或不相关的信息,对数据进行归一化、标准化处理。实体识别和关系抽取:从数据中识别出实体(如人、地点、概念等)和它们之间的关系。构建图谱:将实体和关系组织成图谱结构,通常使用图数据库来存储。自然语言处理(NLP):分
- 基于neo4j的汽车领域知识图谱问答系统
程序员~小强
neo4j汽车知识图谱
介绍:请使用前务必读一下README.md,系统主要是汽车领域相关知识图谱问答系统,包括了汽车的价格、品牌等十几个关系实体,十几个关系,数据量实体7000+,关系9000+整个系统使用django构建,自带了一份数据,比较完整,有初始化数据接口,每次务必初始化数据后使用,neo4j按照README.md初始化,注意初始化可能需要一个多小时。底层数据库知识图谱采用neo4j,关系型数据库采用sqli
- 构建智能电影知识图谱问答系统
程序员~小强
知识图谱人工智能
在当今信息爆炸的时代,数据的组织与检索变得日益重要。知识图谱作为组织和管理复杂数据关系的强大工具,为实现智能问答系统提供了坚实的基础。本文将详细解析如何利用Python、Django框架以及Neo4j数据库,从零开始构建一个电影知识图谱问答与展示系统。###首先,系统概览本系统的核心是一个电影领域的知识图谱问答和展示平台,其背后依托的是强大的Neo4j图数据库。整个平台是基于Python的Djan
- 构建智能电影知识图谱问答系统
程序员~小强
知识图谱人工智能
在当今信息爆炸的时代,数据的组织与检索变得日益重要。知识图谱作为组织和管理复杂数据关系的强大工具,为实现智能问答系统提供了坚实的基础。本文将详细解析如何利用Python、Django框架以及Neo4j数据库,从零开始构建一个电影知识图谱问答与展示系统。首先,系统概览本系统的核心是一个电影领域的知识图谱问答和展示平台,其背后依托的是强大的Neo4j图数据库。整个平台是基于Python的Django框
- NLP学习-05.问答系统基础-文本表示(word representation)-距离计算
logi
上几节已经介绍了文本的分词,拼写纠错,这节介绍wordrepresentation和距离的计算都比较简单,不做详细说明.什么是wordrepresentation即将一个文本进行向量化,这样可以容易地进行距离的度量.有哪些方法进行文本向量化onehot:每个词都用onehot变化表示成稀疏向量;booleanrepresentation:即词典的长度为向量长度,有词的记为1;booleanrepr
- 深度学习在知识图谱问答中的革新与挑战
cooldream2009
AI技术NLP知识知识图谱深度学习知识图谱人工智能
目录前言1背景知识2基于深度学习改进问句解析模型2.1谓词匹配2.2问句解析2.3逐步生成查询图3基于深度学习的端到端模型3.1端到端框架3.2简单嵌入技术4优势4.1深入的问题表示4.2实体关系表示深挖4.3候选答案排序效果好5挑战5.1依赖大量训练语料5.2推理类问句效果有限5.3可解释性差结语前言随着深度学习技术的迅猛发展,其在知识图谱问答领域的应用正成为推动智能问答系统发展的关键因素。本文
- 基于预训练语言模型的检索- 匹配式知识图谱问答系统
Necther
自然语言处理知识图谱语言模型人工智能
基于预训练语言模型的检索-匹配式知识图谱问答系统张鸿志,李如寐,王思睿,黄江华美团,北京市朝阳区100020{zhanghongzhi03,lirumei,wangsirui,huangjianghua}@http://meituan.comAbstract.本文介绍了我们在CCKS-2020的KBQA任务上的技术方案。该系统包括指称识别、实体链接、候选答案生成以及答案排序四个子模块。在指称识别中
- 完蛋!我把AI喂吐了!
有道AI情报局
有道QAnything人工智能机器学习算法
当我们用RAG构建一个知识库问答应用的时候,总是希望知识库里面灌的数据越多,问答的效果越好,事实真是如此吗?这篇文章给大家答案。引言在人工智能问答系统的发展中,RAG(Retrieval-AugmentedGeneration)技术以其独特的检索增强生成方式,为减少大模型幻觉开辟了新的天地。然而,在实际落地过程中有一个很大的疑问:RAG系统,数据越多效果越好吗?本文将深入分析数据量如何影响RAG系
- QAnything之BCEmbedding技术路线
有道AI情报局
有道QAnything人工智能算法开源
QAnything和BCEmbedding简介QAnything[github]是网易有道开源的检索增强生成式应用(RAG)项目,在有道许多商业产品实践中已经积累丰富的经验,比如有道速读和有道翻译。QAnything是一个支持任意格式文件或数据库的本地知识库问答系统,可获得准确、快速、靠谱的问答体验。QAnything支持断网离线使用,可私有化。BCEmbedding是网易有道研发的两阶段检索算法
- 【大厂AI课学习笔记】【1.5 AI技术领域】(10)对话系统
giszz
学习笔记人工智能学习笔记
对话系统,DialogueSystem,也称为会话代理。是一种模拟人类与人交谈的计算机系统,旨在可以与人类形成连贯通顺的对话,通信方式主要有语音/文本/图片,当然也可以手势/触觉等其他方式一般我们将对话系统,分为两类:任务导向性的对话系统。例如问答系统;非任务导向型的对话系统。例如聊天机器人;比如在聊天机器人,语音助手,智能客服方面,都有很大的应用。比较重要的是,基于人工智能的对话系统,可以模拟人
- Bert与ChatGPT
ALGORITHM LOL
bertchatgpt人工智能
1.Bert模型BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种预训练语言表示的方法,由GoogleAI在2018年提出。它标志着自然语言处理(NLP)领域的一个重大进步,因为它能够理解单词在不同上下文中的含义,从而显著提高了机器翻译、问答系统、文本摘要等任务的性能。核心概念双向Transformer:BERT的核心是Tran
- 使用阿里云通义千问14B(Qianwen-14B)模型自建问答系统
wangqiaowq
人工智能
使用阿里云通义千问14B(Qianwen-14B)模型自建问答系统时,调度服务器资源的详情将取决于以下关键因素:模型部署:GPU资源:由于Qianwen-14B是一个大规模语言模型,推理时需要高性能的GPU支持。模型参数量大,推理过程中对显存(GPU内存)的要求高,可能需要多块高端GPU,并且考虑是否支持模型并行或数据并行以充分利用硬件资源。单卡显存需求:根据之前的信息,Qianwen-14B微调
- 第14课:动手制作自己的简易聊天机器人
一纸繁鸢w
自动问答简介自动聊天机器人,也称为自动问答系统,由于所使用的场景不同,叫法也不一样。自动问答(QuestionAnswering,QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的
- 自然语言处理(NLP)——使用Rasa创建聊天机器人
思诺学长
NLP自然语言处理机器人nlp自然语言处理
1基本概念1.1自然语言处理的分类IR-BOT:检索型问答系统Task-bot:任务型对话系统Chitchat-bot:闲聊系统1.2任务型对话Task-Bot:task-orientedbot这张图展示了一个语音对话系统(或聊天机器人)的基本组成部分和它们之间的工作流程。这个系统可以接受语音信号作为输入,输出文本响应,并且它包括以下几个主要部分:1.2.1自动语音识别(ASR)这个部分的任务是将
- 自然语言NLP
Flying_Fish_roe
自然语言处理人工智能
什么是NLPNLP(NaturalLanguageProcessing)是自然语言处理的缩写,是计算机科学和人工智能领域的一个研究方向。NLP致力于使计算机能够理解、处理和生成人类自然语言的能力。通过NLP技术,计算机可以通过识别和理解语言中的文本、语音和情感等信息来与人类进行交互。NLP的应用包括机器翻译、信息提取、问答系统、情感分析、语音识别和自动摘要等。NLP的目标是使计算机具备与人类相近的
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。