在JDK1.2以前的版本中,当一个对象不被任何变量引用,那么程序就无法再使用这个对象。也就是说,只有对象处于可触及状态,程序才能使用它。这 就像在日常生活中,从商店购买了某样物品后,如果有用,就一直保留它,否则就把它扔到垃圾箱,由清洁工人收走。一般说来,如果物品已经被扔到垃圾箱,想再 把它捡回来使用就不可能了。
但有时候情况并不这么简单,你可能会遇到类似鸡肋一样的物品,食之无味,弃之可惜。这种物品现在已经无用了,保留它会占空间,但是立刻扔掉它也不划算,因 为也许将来还会派用场。对于这样的可有可无的物品,一种折衷的处理办法是:如果家里空间足够,就先把它保留在家里,如果家里空间不够,即使把家里所有的垃 圾清除,还是无法容纳那些必不可少的生活用品,那么再扔掉这些可有可无的物品。
从JDK1.2版本开始,把对象的引用分为四种级别,从而使程序能更加灵活的控制对象的生命周期。这四种级别由高到低依次为:强引用、软引用、弱引用和虚引用。
1.强引用
本章前文介绍的引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空 间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。
2.软引用(SoftReference)
如果一个对象只具有软引用,那就类似于可有可物的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,Java虚拟机就会把这个软引用加入到与之关联的引用队列中。
3.弱引用(WeakReference)
如果一个对象只具有弱引用,那就类似于可有可物的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它 所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。
4.虚引用(PhantomReference)
"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。
虚引用主要用来跟踪对象被垃圾回收的活动。虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列(ReferenceQueue)联合使用。当垃 圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是 否已经加入了虚引用,来了解
被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
"引用"既可以作为动词,也可以作为名词,应该根据上下文来区分"引用"的含义。
在java.lang.ref包中提供了三个类:SoftReference类、WeakReference类和PhantomReference类,它 们分别代表软引用、弱引用和虚引用。ReferenceQueue类表示引用队列,它可以和这三种引用类联合使用,以便跟踪Java虚拟机回收所引用的对 象的活动。以下程序创建了一个String对象、ReferenceQueue对象和WeakReference对象:
//创建一个强引用 String str = new String("hello"); //创建引用队列, <String>为范型标记,表明队列中存放String对象的引用 ReferenceQueue<String> rq = new ReferenceQueue<String>(); //创建一个弱引用,它引用"hello"对象,并且与rq引用队列关联 //<String>为范型标记,表明WeakReference会弱引用String对象 WeakReference<String> wf = new WeakReference<String>(str, rq);
以上程序代码执行完毕,内存中引用与对象的关系如图11-10所示。
图11-10 "hello"对象同时具有强引用和弱引用
在图11-10中,带实线的箭头表示强引用,带虚线的箭头表示弱引用。从图中可以看出,此时"hello"对象被str强引用,并且被一个WeakReference对象弱引用,因此"hello"对象不会被垃圾回收。
在以下程序代码中,把引用"hello"对象的str变量置为null,然后再通过WeakReference弱引用的get()方法获得"hello"对象的引用:
String str = new String("hello"); //① ReferenceQueue<String> rq = new ReferenceQueue<String>(); //② WeakReference<String> wf = new WeakReference<String>(str, rq); //③ str=null; //④取消"hello"对象的强引用 String str1=wf.get(); //⑤假如"hello"对象没有被回收,str1引用"hello"对象 //假如"hello"对象没有被回收,rq.poll()返回null Reference<? extends String> ref=rq.poll(); //⑥
执行完以上第④行后,内存中引用与对象的关系如图11-11所示,此 时"hello"对象仅仅具有弱引用,因此它有可能被垃圾回收。假如它还没有被垃圾回收,那么接下来在第⑤行执行wf.get()方法会返回 "hello"对象的引用,并且使得这个对象被str1强引用。再接下来在第⑥行执行rq.poll()方法会返回null,因为此时引用队列中没有任何 引用。ReferenceQueue的poll()方法用于返回队列中的引用,如果没有则返回null。
图11-11 "hello"对象只具有弱引用
在以下程序代码中,执行完第④行后,"hello"对象仅仅具有弱引用。接下来两次调用System.gc()方法,催促垃圾回收器工作,从而提高 "hello"对象被回收的可能性。假如"hello"对象被回收,那么WeakReference对象的引用被加入到ReferenceQueue中, 接下来wf.get()方法返回null,并且rq.poll()方法返回WeakReference对象的引用。图11-12显示了执行完第⑧行后内存 中引用与对象的关系。
String str = new String("hello"); //① ReferenceQueue<String> rq = new ReferenceQueue<String>(); //② WeakReference<String> wf = new WeakReference<String>(str, rq); //③ str=null; //④ //两次催促垃圾回收器工作,提高"hello"对象被回收的可能性 System.gc(); //⑤ System.gc(); //⑥ String str1=wf.get(); //⑦ 假如"hello"对象被回收,str1为null Reference<? extends String> ref=rq.poll(); //⑧
图11-12 "hello"对象被垃圾回收,弱引用被加入到引用队列
在以下例程11-15的References类中,依次创建了10个软引用、10个弱引用和10个虚引用,它们各自引用一个Grocery对象。从程序运 行时的打印结果可以看出,虚引用形同虚设,它所引用的对象随时可能被垃圾回收,具有弱引用的对象拥有稍微长的生命周期,当垃圾回收器执行回收操作时,有可 能被垃圾回收,具有软引用的对象拥有较长的生命周期,但在Java虚拟机认为内存不足的情况下,也会被垃圾回收。
例程11-15 References.java
import java.lang.ref.*; import java.util.*; class Grocery{ private static final int SIZE = 10000; //属性d使得每个Grocery对象占用较多内存,有80K左右 private double[] d = new double[SIZE]; private String id; public Grocery(String id) { this.id = id; } public String toString() { return id; } public void finalize() { System.out.println("Finalizing " + id); } } public class References { private static ReferenceQueue<Grocery> rq = new ReferenceQueue<Grocery>(); public static void checkQueue() { Reference<? extends Grocery> inq = rq.poll(); //从队列中取出一个引用 if(inq != null) System.out.println("In queue: "+inq+" : "+inq.get()); } public static void main(String[] args) { final int size=10; //创建10个Grocery对象以及10个软引用 Set<SoftReference<Grocery>> sa = new HashSet<SoftReference<Grocery>>(); for(int i = 0; i < size; i++) { SoftReference<Grocery> ref= new SoftReference<Grocery>(new Grocery("Soft " + i), rq); System.out.println("Just created: " +ref.get()); sa.add(ref); } System.gc(); checkQueue(); //创建10个Grocery对象以及10个弱引用 Set<WeakReference<Grocery>> wa = new HashSet<WeakReference<Grocery>>(); for(int i = 0; i < size; i++) { WeakReference<Grocery> ref= new WeakReference<Grocery>(new Grocery("Weak " + i), rq); System.out.println("Just created: " +ref.get()); wa.add(ref); } System.gc(); checkQueue(); //创建10个Grocery对象以及10个虚引用 Set<PhantomReference<Grocery>> pa = new HashSet<PhantomReference<Grocery>>(); for(int i = 0; i < size; i++) { PhantomReference<Grocery>ref = new PhantomReference<Grocery>(new Grocery("Phantom " + i), rq); System.out.println("Just created: " +ref.get()); pa.add(ref); } System.gc(); checkQueue(); } }
在Java集合中有一种特殊的Map类型:WeakHashMap, 在这种Map中存放了键对象的弱引用,当一个键对象被垃圾回收,那么相应的值对象的引用会从Map中删除。WeakHashMap能够节约存储空间,可用 来缓存那些非必须存在的数据。
以下例程11-16的MapCache类的main()方法创建了一个WeakHashMap对象,它存放了一组Key对象的弱引用,此外main()方法还创建了一个数组对象,它存放了部分Key对象的强引用。
例程11-16 MapCache.java
import java.util.*; import java.lang.ref.*; class Key { String id; public Key(String id) { this.id = id; } public String toString() { return id; } public int hashCode() { return id.hashCode(); } public boolean equals(Object r) { return (r instanceof Key) && id.equals(((Key)r).id); } public void finalize() { System.out.println("Finalizing Key "+ id); } } class Value { String id; public Value(String id) { this.id = id; } public String toString() { return id; } public void finalize() { System.out.println("Finalizing Value "+id); } } public class MapCache { public static void main(String[] args) throws Exception{ int size = 1000; // 或者从命令行获得size的大小 if(args.length > 0)size = Integer.parseInt(args[0]); Key[] keys = new Key[size]; //存放键对象的强引用 WeakHashMap<Key,Value> whm = new WeakHashMap<Key,Value>(); for(int i = 0; i < size; i++) { Key k = new Key(Integer.toString(i)); Value v = new Value(Integer.toString(i)); if(i % 3 == 0) keys[i] = k; //使Key对象持有强引用 whm.put(k, v); //使Key对象持有弱引用 } //催促垃圾回收器工作 System.gc(); //把CPU让给垃圾回收器线程 Thread.sleep(8000); } }
以上程序的部分打印结果如下:
Finalizing Key 998 Finalizing Key 997 Finalizing Key 995 Finalizing Key 994 Finalizing Key 992 Finalizing Key 991
Finalizing Key 991
从打印结果可以看出,当执行System.gc()方法后,垃圾回收器只会回收那些仅仅持有弱引用的Key对象。id可以被3整数的Key对象持有强引用,因此不会被回收。