- DeepSeek与Python语言关系深度探索
学堂在线
人工智能编程python开发语言DeepSeek
文章目录一、技术整合逻辑二、案例分析**案例1:调用DeepSeekAPI实现智能问答系统****案例2:使用Python微调DeepSeek垂直领域模型****案例3:基于DeepSeek与Python的多模态应用开发**三、技术挑战与优化方向四、总结从技术角度看,DeepSeek(深度求索)作为通用人工智能平台,与Python语言存在紧密协同关系。Python作为AI领域的“第一语言”,在De
- 基于neo4j知识图谱+flask的大数据医疗领域知识问答系统(完整源码+源码解析+开发文档+视频讲解等资料
2401_84185074
neo4j知识图谱flask
1.classMedicalSpider::定义了一个名为MedicalSpider的类。2.def**init**(self)::这是类的构造函数,用于在创建类的实例时进行初始化。在初始化过程中,建立了与MongoDB数据库的连接,并选择了名为‘medical’的数据库和名为‘data’的集合。3.definsert\_data(self,data)::这是一个方法,用于插入数据到MongoDB
- LLM+Embedding构建问答系统的局限性及优化方案
lichunericli
人工智能自然语言处理语言模型
LangChain+LLM方案的局限性:LLM意图识别准确性较低,交互链路长导致时间开销大;Embedding不适合多词条聚合匹配等。背景在探索如何利用大型语言模型(LLM)构建知识问答系统的过程中,我们确定了两个核心步骤:将用户提出的问题和知识库中的信息转换成嵌入向量(Embeddings),然后利用向量相似度技术来检索最相关的知识条目。利用LLM来识别用户问题的意图,并对检索到的原始答案进行加
- 人狗大战 Java新实现,更有趣,Java _Springboot_Spring AI
web15085415935
面试学习路线阿里巴巴javaspringspringboot
人狗大战场景介绍人狗大战最核心的还是用一个具体的例子来表达面向对象编程的能力,在最新的实现里面,我们扩展一下人和狗对战的流程,增加springboot,整合springaialibaba,实现一个人一边说话,一边跟狗对战的能力,主要想要体现springboot、springai的各种能力。本例使用springaialibaba+通义千问Qwenapi来构建这个智能问答系统,qwen有100万免费T
- 接入deepseek构建RAG企业智能问答系统
da pai ge
prometheuskubernetesjavascript
RAG基础流程AI大模型回答问题的方式AI大模型基于其训练的数据回答所有问题。如果未针对特定业务(如美团)进行专门“学习”,面对直接相关的问题时,无法给出理想的答案。让AI大模型“学习”业务知识的两种主要方法:微调(Fine-Tuning):在预训练模型基础上根据特定任务和数据集调整参数。RAG(Retrieval-AugmentedGeneration,检索增强生成):使用泛化的大模型,通过对问
- 飞致云开源社区月度动态报告(2025年1月)
FIT2CLOUD飞致云
开源飞致云开源大屏阅读报告
自2023年6月起,中国领先的开源软件公司飞致云以月度为单位发布《飞致云开源社区月度动态报告》,旨在向广大社区用户同步飞致云旗下系列开源软件的发展情况,以及当月主要的产品新版本发布、社区运营成果等相关信息。飞致云开源运营数据概览(2025年1月)2025年1月飞致云开源软件运营数据概览(统计时间为2025.1.1~2025.1.26)2025年1月产品发布事件■MaxKB开源知识库问答系统2025
- MaxKB开源知识库问答系统累计下载数量超过300,000次!
FIT2CLOUD飞致云
开源大模型人工智能MaxKB知识库AI
截至2024年12月30日22:00,飞致云旗下开源项目——基于大语言模型和RAG的知识库问答系统MaxKB全网累计下载数量超过300,000次!
- DeepSeek:知识图谱与大模型参数化知识融合的创新架构
deepseek
引言:AI领域的融合趋势在目前大模型与知识图谱作为两个重要的研究方向,各自展现出了强大的能力与潜力。大模型,凭借其在海量数据上的深度训练,拥有强大的语言理解与生成能力,能够处理多种自然语言处理任务,如文本生成、问答系统、机器翻译等,像GPT系列模型,一经推出便在全球范围内引起了广泛关注,展示了大模型在语言处理方面的卓越能力。知识图谱则以结构化的方式组织知识,清晰地展现了实体之间的关系,为智能应用提
- 大语言模型应用指南:Gemini简介
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1大型语言模型的兴起近年来,随着计算能力的提升和数据量的爆炸式增长,大型语言模型(LLM)逐渐成为人工智能领域的研究热点。LLM基于深度学习技术,通过训练海量的文本数据,能够理解和生成自然语言,并在各种任务中展现出惊人的能力,例如:文本生成:写作故事、诗歌、新闻报道等机器翻译:将一种语言翻译成另一种语言问答系统:回答用户提出的问题代码生成:自动生成代码情感分析:分析文本的情感倾向1
- 【AI】【RAG】使用WebUI部署RAG:数据优化与设置技巧详解
踏雪无痕老爷子
aiAIRAG
RAG(Retrieval-AugmentedGeneration)是一种通过知识库构建的高效问答系统。然而,在使用WebUI部署和优化RAG时,数据源管理和参数设置直接决定了系统的回答质量。本文将结合具体问题和优化方法,为您详细解读如何最大化RAG的性能和准确性。数据源相关问题及解决方案在实际操作中,RAG可能会因数据源处理不当而出现回答异常的问题。以下是常见问题及其优化策略:1.数据长度过长导
- 【深度解析】DeepSeek-R1的五大隐藏提示词
吴师兄大模型
现代大模型技术与应用deepseekDeepSeek-R1大模型人工智能prompt提示词LLM
LangChain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 人狗大战 Java新实现,更有趣,Java _Springboot_Spring AI
ekskef_sef
javaspringspringboot
人狗大战场景介绍人狗大战最核心的还是用一个具体的例子来表达面向对象编程的能力,在最新的实现里面,我们扩展一下人和狗对战的流程,增加springboot,整合springaialibaba,实现一个人一边说话,一边跟狗对战的能力,主要想要体现springboot、springai的各种能力。本例使用springaialibaba+通义千问Qwenapi来构建这个智能问答系统,qwen有100万免费T
- 三分钟看懂RAG在智能问答系统中的应用
大模型玩家
人工智能算法机器学习语言模型ai大模型程序员
什么是RAG?RAG是一种将信息检索与生成模型相结合的混合架构。首先,检索器从外部知识库或文档集中获取与用户查询相关的内容片段;然后,生成器基于这些检索到的内容生成自然语言输出,确保生成的内容既信息丰富,又具备高度的相关性和准确性。RAG模型由两个主要模块构成:检索器(Retriever)与生成器(Generator)。这两个模块相互配合,确保生成的文本既包含外部的相关知识,又具备自然流畅的语言表
- 从 0 到 1 掌握 LangChain Agents:自定义工具 + LLM 打造智能工作流!
吴师兄大模型
现代大模型技术与应用langchainAgents自定义工具pythonLLM大模型LangChain
系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手动评估与LLM辅助
- 【大模型应用开发 动手做AI Agent】第二轮思考:模型决定计算
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】第二轮思考:模型决定计算关键词:大模型,AIAgent,模型决定计算,模型优化,计算优化,硬件加速,效率提升1.背景介绍随着深度学习技术的飞速发展,大模型在自然语言处理、计算机视觉等领域取得了突破性进展。这些模型通过学习海量数据,能够完成复杂的任务,如机器翻译、图像识别、问答系统等。然而,大模型在应用开发中面临着计算资源、能耗和效率等方面的挑战。本文将从“模型
- 利用 OpenAI GPT、LangChain 和 Streamlit 创建自己的 PDF 问答系统
hj_caas
每日外文推荐gptlangchainpdf
每日推荐一篇专注于解决实际问题的外文,精准翻译并深入解读其要点,助力读者培养实际问题解决和代码动手的能力。欢迎关注公众号原文标题:CreateYourOwnPDFQuestionAnsweringSystemwithOpenAIGPT,LangChain,andStreamlit原文地址:https://medium.com/python-in-plain-english/create-your-
- 机器学习—大语言模型:推动AI新时代的引擎
云边有个稻草人
人工智能机器学习语言模型
云边有个稻草人-CSDN博客目录引言一、大语言模型的基本原理1.什么是大语言模型?2.Transformer架构3.模型训练二、大语言模型的应用场景1.文本生成2.问答系统3.编码助手4.多语言翻译三、大语言模型的最新进展1.GPT-42.开源模型四、构建和部署一个简单的大语言模型1.数据准备2.模型训练3.部署模型五、大语言模型的未来发展结语引言大语言模型(LargeLanguageModels
- 2024年7月手把手教你搭建,企业级AI大模型知识库问答系统
Peter高效办公有大招
人工智能llama
安装Docker下载Docker并安装https://www.docker.com/products/docker-desktop/安装Ollama下载Ollama并安装https://ollama.com/下载Chat模型我使用阿里的通义千问作为演示,根据自己的电脑配置情况,选择合适的模型。总体来说,模型是越大,效果越好,但是对电脑的配置要求也越高4b模型要3GB内存7b模型要8GB内存13b模
- (25-4-01)基于本地知识库的自动问答系统(LangChain+ChatGLM+ModelScope/Huggingface部署): 构建和部署对话系统(1)
码农三叔
《NLP算法实战》训练RAG多模态)langchainpython自然语言处理语言模型bert文心一言Huggingface
13.3.4构建和部署对话系统文件jina_serving.py定义了一个名为KnowledgeBasedChatLLM的类,用于初始化模型配置、加载文件、检索问题答案等操作。其中,LangChain是文件jina_serving.py中的一个重要组件,它通过将自然语言处理技术与信息检索技术相结合,实现了以下功能:模型管理与加载:通过init_model和reinit_model函数,实现了模型的
- 【LangChain编程:从入门到实践】数据库问答场景
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】数据库问答场景作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在现代信息社会中,数据的爆炸性增长使得如何高效地从海量数据中提取有用信息成为一个重要课题。数据库问答系统(DatabaseQuestionAnsweringSystem,DBQA)作为一种能够直接从数据库中获取答案的技术,
- 如何寻找好用的GPTs模型?
小宝哥Code
ChatGPT与AIGC人工智能
要有效地寻找和使用好用的GPT模型,可以按照以下步骤来选择和应用最合适的模型,尤其是在科研或工作中需要完成特定任务时:1.明确需求和任务在寻找适合的GPT模型之前,首先需要明确你要解决的任务或需求。不同的GPT模型在处理各种任务时表现不一样。常见的任务包括:文本生成:创作文章、生成报告、写作论文等。问答系统:快速解答科研问题、技术问题等。翻译和润色:翻译论文、改进文章语言质量等。数据分析和图表生成
- 知识图谱与大语言模型:构建智能问答系统
AGI大模型与大数据研究院
大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
1.背景介绍在当今的信息时代,数据的获取和处理已经成为了我们生活中不可或缺的一部分。然而,随着数据量的爆炸性增长,如何从海量的数据中提取有用的信息,进而为用户提供精准的服务,已经成为了一个重要的研究课题。在这个背景下,知识图谱和大语言模型应运而生,它们通过对数据的深度挖掘和智能处理,为构建智能问答系统提供了可能。2.核心概念与联系2.1知识图谱知识图谱是一种新型的数据结构,它以图的形式表示实体之间
- GraphRAG、Naive RAG框架总结主流框架推荐(共23个):LightRAG、nano-GraphRAG、Fast-GraphRAG、Dify、RAGflow等
汀、人工智能
LLM工业级落地实践LLM技术汇总人工智能RAG检索系统搜索推荐检索增强生成GraphRAGDify
设想你正致力于构建一个智能问答系统,该系统旨在从庞大的知识库中迅速而精确地提取关键信息,并据此生成自然流畅的回答。然而,随着数据规模的不断扩大,系统面临着严峻的挑战:检索效率逐渐下滑,生成内容的质量亦趋于下降。这正是当前众多检索增强型生成(RAG)系统亟需解决的核心问题——如何在数据冗余、检索效率低下以及生成内容不相关之间找到一个最佳的平衡点。RAG的发展瓶颈:传统RAG系统通过检索模型提取最相关
- 检索增强(Retrieval Augmentation)是一种结合信息检索技术和生成模型的技术
大霸王龙
系统分析业务人工智能
检索增强(RetrievalAugmentation)是一种结合信息检索技术和生成模型的技术,旨在通过从外部知识库或文档中检索相关信息来增强生成模型的能力。这种方法广泛应用于自然语言处理(NLP)任务中,如问答系统、对话生成和文本生成等。1.检索增强的核心思想检索增强的核心思想是将生成模型与信息检索系统结合,利用外部知识库或文档中的信息来辅助生成更准确、更丰富的回答或内容。具体来说,检索增强包括以
- 构建 Q&A 系统:基于文档和模型的问答
drebander
AI编程springAI
在现代企业中,自动化的问答系统可以极大地提升工作效率,特别是在文档处理、客户支持和知识管理等领域。通过结合SpringAI和文档检索技术,可以轻松构建一个智能的问答系统,帮助用户从文档中快速获取信息。本文将展示如何利用SpringAI构建一个可以根据文档内容回答问题的智能Q&A系统。1.构建智能Q&A系统的背景现代的Q&A系统不仅需要能理解用户的问题,还需要能够从大量文档中找到相关的答案。传统的问
- 支持生成式 AI:聊天与文档检索的结合
drebander
AI编程人工智能springAI
生成式AI已成为现代应用的重要组成部分,从实时聊天到文档检索,再到智能问答系统,其核心是能够理解上下文并生成有用的回答。在生成式AI中,聊天会话内存(ChatConversationMemory)和检索增强生成(RAG,RetrievalAugmentedGeneration)是两个关键功能,分别解决了上下文管理和大规模文档检索问题。本文将介绍SpringAI如何支持这两个功能,并通过实际应用场景
- Coze,Dify,FastGPT,对比
云连山
AI编程AI编程
在当今AI技术迅速发展的背景下,AIAgent智能体成为了关键领域,Coze、Dify和FastGPT作为其中的佼佼者,各有千秋。平台介绍-FastGPT:由环界云计算公司发起,是基于大语言模型(LLM)的开源知识库问答系统。其亮点是支持Flow可视化工作流编排,在知识问答领域表现出色,拥有庞大用户群体,包括数百家企业付费客户等。网址为https://fastgpt.cn/。-Dify:苏州语灵人
- SQLDatabase Toolkit: 搭建基于SQL数据库的智能问答系统
azzxcvhj
数据库sqljvmpython
技术背景介绍SQLDatabaseToolkit是一个非常有用的工具集,旨在与SQL数据库进行交互。它的常见应用场景是通过数据库数据构建问答系统,特别是在需要迭代处理和错误恢复的情况下。此工具包在LangChain社区包中提供,支持多种大型语言模型(LLM)或聊天模型的集成。核心原理解析SQLDatabaseToolkit的核心功能包括查询执行、模式查找以及查询检查等。借助这些工具,可以构建一个智
- 大模型:LangChain技术讲解
玉成226
【大模型】langchain
一、什么是LangChain1、介绍LangChain是一个用于开发由大型语言模型提供支持的Python框架。它提供了一系列工具和组件,帮助我们将语言模型集成到自己的应用程序中。有了它之后,我们可以更轻松地实现对话系统、文本生成、文本分类、问答系统等功能。2、LangChain官网文档官网:https://python.langchain.com/docs/introduction/3、LangC
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数