- 用LangChain构建自愈式生成式AI:颠覆传统知识库的智能问答系统实战
煜bart
机器人人工智能pythonAI编程
引言:当生成式AI遇到自进化架构ChatGPT的惊艳表现让企业意识到生成式AI的潜力,但传统问答系统仍面临数据孤岛、知识更新滞后等痛点。本文将揭秘如何通过LangChain框架构建具有自进化能力的智能问答系统,实现企业知识库的实时动态更新与智能推理。通过本文,您将掌握一套让AI系统在运行中持续学习、自主优化的创新架构。---##一、核心技术突破###1.1自愈式数据管道(Self-healingP
- 使用MarkdownHeaderTextSplitter拆分Markdown文档
scaFHIO
python前端开发语言
在AI驱动的应用中,如聊天机器人或问答系统,处理大型文档时,通过分片技术将文档拆分为更小的单元是必要的步骤。尤其是对于Markdown格式的文件,它们通常由各种层级的标题结构化组织。通过按标题拆分,有利于保留文档的上下文语义一致性。本篇文章将讲解如何使用MarkdownHeaderTextSplitter来实现这一目标。技术背景介绍在将完整的段落或文档进行嵌入时,嵌入过程会考虑文本的整体上下文以及
- 决策树算法全解析:从零基础到Titanic实战,一文搞定机器学习经典模型
吴师兄大模型
0基础实现机器学习入门到精通算法机器学习决策树人工智能深度学习编程开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 从零精通机器学习:线性回归入门
吴师兄大模型
0基础实现机器学习入门到精通机器学习线性回归人工智能python算法回归开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- C#运算符与表达式:从入门到游戏伤害计算实践
吴师兄大模型
C#编程从入门到进阶c#游戏开发语言运算符表达式变成游戏程序
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- C#入门:从变量与数据类型开始你的游戏开发之旅
吴师兄大模型
C#编程从入门到进阶c#开发语言变量与数据类型游戏开发Unity基础C#变量数据类型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- RAG问答系统:检索增强生成框架
ZhangJiQun&MXP
2021论文教学大模型语言模型
目录RAG(Retrieval-AugmentedGeneration)框架一、RAG框架的定义二、RAG框架的工作原理三、RAG框架的举例说明四、RAG框架的优势RAG问答系统二、工作流程三、优势四、应用场景RAG(Retrieval-AugmentedGeneration)框架即检索增强生成框架,是一种结合了信息检索技术与语言生成模型的人工智能技术。以下是对RAG框架的详细解释及举例说明:一、
- 自建 DeepSeek 时代已来,联网搜索如何高效实现
云原生
作者:张添翼(澄潭)开源LLM的新纪元:DeepSeek带来的技术平权随着DeepSeek等高质量开源大模型的涌现,企业自建智能问答系统的成本已降低90%以上。基于7B/13B参数量的模型在常规GPU服务器上即可获得商业级响应效果,配合Higress开源AI网关的增强能力,开发者可快速构建具备实时联网搜索能力的智能问答系统。Higress:零代码增强LLM的瑞士军刀Higress作为云原生API网
- DeepSeek使用教程
rider189
杂谈java职场和发展学习方法创业创新开发语言健康医疗媒体
一、教育行业:个性化学习与智能辅导机会点:智能作业批改:教师上传学生作业,DeepSeek自动识别答案并生成批改报告,节省80%人工时间。虚拟导师:学生输入数学题或编程问题,模型实时生成分步解析,支持追问互动,解决“卡壳”难题。个性化学习路径:根据学生测试结果,自动推荐课程和习题,提升学习效率30%以上。教程亮点:登录DeepSeek官网,进入“问答系统”模块,输入学科问题即可获取答案。上传学生作
- 机器学习中输入输出Tokens的概念详解
爱吃土豆的程序员
机器学习基础机器学习人工智能Tokens
随着深度学习技术的快速发展,大语言模型(LargeLanguageModels,LLMs)已经成为自然语言处理(NLP)领域的一个热点研究方向。这些模型不仅能够生成高质量的文本,还能在多种任务中展现出卓越的表现,比如机器翻译、问答系统、文本摘要等。在大语言模型的工作流程中,Tokens的概念扮演着至关重要的角色。本文将详细介绍大语言模型如何使用Tokens,以及如何计算Tokens的数量。什么是T
- 大模型RAG实战|混合检索:BM25检索+向量检索的LlamaIndex实现
AIGC大模型 吱屋猪
djangopython后端AI-native人工智能llama百度
ThinkRAG大模型RAG实战系列文章,带你深入探索使用LlamaIndex框架,构建本地大模型知识库问答系统。本系列涵盖知识库管理、检索优化、模型本地部署等主题,通过代码与实例,讲解如何打造生产级系统,实现本地知识库的快速检索与智能问答。本文我将介绍一种效果更好的混合检索方法,在实际问答场景中,优于向量数据库自带的混合检索功能。1什么是混合检索目前,大模型RAG系统中普遍采用混合检索来提升检索
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- 从过拟合到强化学习:机器学习核心知识全解析
吴师兄大模型
0基础实现机器学习入门到精通机器学习人工智能过拟合强化学习pythonLLMscikit-learn
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 大规模语言模型从理论到实践 开源指令数据集
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践开源指令数据集1.背景介绍大规模语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到翻译,再到问答系统,几乎无所不能。这些模型的成功离不开庞大的训练数据集和复杂的算法架构。然而,如何有效地构建和利用开源指令数据集,仍然是一个值得深入探讨的话题。2.核
- Python 科学计算与机器学习入门:NumPy + Scikit-Learn 实战指南
吴师兄大模型
pythonnumpyscikit-learn人工智能开发语言机器学习编程
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- RAG技术的PDF智能问答系统
AI Echoes
深度学习
关键要点系统基于RAG(检索增强生成)技术,允许用户上传PDF并进行智能问答。使用Ollama的deepseek-r1模型和FAISS向量数据库,支持普通对话和基于PDF的问答模式。提供简洁的Web界面,支持文件拖拽上传和多轮对话。研究表明,系统适合处理PDF内容查询,但性能可能因PDF复杂性而异。系统概述这个PDF智能问答系统是一个基于RAG技术的工具,旨在帮助用户通过上传PDF文件进行智能交互
- 自然语言处理(NLP)技术介绍
风吹晚风悠
gpt人工智能nlp自然语言处理
自然语言处理(NLP)是一种涉及计算机和人类语言之间交流的技术。NLP技术可以应用于多个领域,例如机器翻译、情感分析、文本分类、问答系统等。以下是一些NLP技术的示例:机器翻译:NLP技术可用于将一个语言的文本自动翻译成另一个语言。例如,GoogleTranslate和百度翻译等在线翻译工具就使用了NLP技术。情感分析:NLP技术可用于分析文本中的情感和情感倾向。这可以帮助企业了解公众对其产品或服
- Python 网络编程实战:5分钟实现多线程下载工具与 Web 服务器
吴师兄大模型
pythonWeb服务器多线程下载工具网络编程人工智能开发语言PYTHON
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 相同的问题看看Grok3怎么回答-Dify、RAG-Flow、FastGPT 核心特点对比
释迦呼呼
AI一千问人工智能深度学习机器学习自然语言处理算法
关键要点研究表明,Dify、RAG-Flow和FastGPT都是开源平台,专注于AI应用开发,特别是涉及RAG(检索增强生成)和知识库的场景。证据倾向于认为,Dify更通用,适合广泛的AI应用开发;RAG-Flow专注于深度文档理解的RAG引擎;FastGPT强调视觉工作流,适合构建知识库和问答系统。它们的区别在于平台类型、核心功能和目标用户,存在一些争议,如代理能力或文档处理复杂性。Dify、R
- RNN 实战指南:用 PyTorch 从零实现文本分类
吴师兄大模型
PyTorchpytorchpython人工智能RNN循环神经网络文本分类开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- AI 问答系统实战:用 Python + Flask + LLM 打造你的智能对话机器人!
Leaton Lee
人工智能pythonflask
开篇互动:你是否想拥属于自己的AI问答机器人?“你是否想过拥有一个可以随时为你解答问题、提供建议的AI助手?”随着大语言模型(LLM)的快速发展,打造一个智能问答系统已经成为可能!本文将手把手教你如何利用Python和Flask快速搭建一个属于自己的AI问答系统,并集成强大的语言模型(如OpenAI的GPT-3.5或HuggingFace的LLaMA)。无论是技术小白还是有一定经验的开发者,都能轻
- 使用LangChain访问个人数据第一章-简介
明志刘明
大模型学习手册langchain
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序正文在大数据时代,数据价值逐渐凸显,打造定制化、个性化服务,个人数据尤为重要。要开发一个具备较强服务能力、能够充分展现个性化智能的应用程序,大模型与个人数据的对齐是一个重要步骤。作为针对大模型开发应运而生的框
- 使用LangChain访问个人数据第八章-总结
明志刘明
大模型学习手册langchain人工智能
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统需要学习LangChian开发的同学请查看基于LangChain开发应用程序本部分前几个章节请查看使用LangChain访问个人数据第一章-简介使用LangChain访问个人数据第二章-文档加载使用LangChain访问个人数据第三章-文档分割使用LangChain访问个人数据第四章
- 基于 LangChain 开发应用程序第一章-简介
明志刘明
大模型学习手册langchain人工智能
需要学习提示词工程的同学请看面向开发者的提示词工程需要学习ChatGPT的同学请查看搭建基于ChatGPT的问答系统本部分章节目录如下:基于LangChain开发应用程序第一章-简介基于LangChain开发应用程序第二章-提示和输出基于LangChain开发应用程序第三章-储存基于LangChain开发应用程序第四章-模型链基于LangChain开发应用程序第五章-基于文档的问答基于LangCh
- PyTorch实现CNN:CIFAR-10图像分类实战教程
吴师兄大模型
PyTorchpytorchcnnCIFAR-10图像分类人工智能python卷积神经网络开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- Python 流程控制终极指南:if-else 和 for-while深度解析
吴师兄大模型
python开发语言if-elsefor-whilebreakcontinue编程
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 利用图数据库构建问答应用指南
scaFHIO
数据库oraclepython
在本指南中,我们将逐步介绍如何在图数据库上创建问答链。这些系统可以让我们针对图数据库中的数据提出问题,并返回自然语言的答案。⚠️安全提示⚠️构建基于图数据库的问答系统需要执行模型生成的图查询。这其中存在固有风险。确保数据库连接权限范围尽可能地缩小以满足链/代理的需求。这将减轻但不会消除构建模型驱动系统的风险。更多安全实践的信息,请查看这里。架构在高层次上,大多数图链的步骤为:将问题转换为图数据库查
- 如何高效使用LangChain实现复杂任务:全面功能指南
shuoac
langchain前端python
LangChain是一个强大的工具集,它为开发基于大语言模型(LLM)的应用提供了丰富的组件和功能支持。无论你是初学者还是经验丰富的开发者,这篇指南将帮助你掌握LangChain的核心功能,并通过可运行的代码示例指导你完成各种任务。目录安装LangChain核心功能概览LangChain表达式语言(LCEL)组件详解及实现Prompt模板消息管理文档加载器向量存储应用场景分析问答系统(Q&A)信息
- 大模型与图数据库RAG通俗流程拆解
gallonyin
产品笔记AI知识图谱
图构建(略)neo4j、tugraph等均可,不影响GraphRAG核心框架模型向量化模型bce-embedding-base_v1重排序模型bce-reranker-base_v1大语言模型Qwen/Qwen2.5-32B-Instruct图数据库tugraph索引faiss核心流程这个调用链日志展示了一个完整的问答系统处理用户输入“百草园里有什么”的过程。本项目使用和参考了开源项目茴香豆。以下
- WebGPT: 基于浏览器辅助的问答系统,结合人类反馈优化答案质量
土豆.exe
人工智能AI人工智能算法机器学习
【摘要】本论文介绍了WebGPT,这是一种通过浏览器辅助问答系统来使用人类反馈进行训练和优化的模型。具体来说,该系统通过与基于文本的网络浏览环境互动,使模型能够搜索和导航网络,从而提高其回答长文本问题的能力。通过将任务设计为人类可以完成的任务,研究人员能够利用模仿学习和人类反馈来训练和优化模型。主要贡献包括:创建了一个基于文本的网络浏览环境,使得模型可以互动,从而改进了检索和合成。生成带有参考文献
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数