集合框架 Map篇(5)----ConcurrentSkipListMap

Map
------


1.HashMap
2.LinkedHashMap
3.IdentityHashMap
4.WeakHashMap
5.TreeMap
6.EnumMap
7.ConcurrentHashMap
8.ConcurrentSkipListMap
--------------------------------------

------------------ConcurrentSkipListMap-----------------

ConcurrentSkipListMap提供了一种线程安全的并发访问的排序映射表。内部是SkipList(跳表)结构实现,在理论上能够在O(log(n))时间内完成查找、插入、删除操作。
         SkipList是一种红黑树的替代方案,由于SkipList与红黑树相比无论从理论和实现都简单许多,所以得到了很好的推广。SkipList是基于一种统计学原理实现的,有可能出现最坏情况,即查找和更新操作都是O(n)时间复杂度,但从统计学角度分析这种概率极小。
使用SkipList类型的数据结构更容易控制多线程对集合访问的处理,因为链表的局部处理性比较好,当多个线程对SkipList进行更新操作(指插入和删除)时,SkipList具有较好的局部性,每个单独的操作,对整体数据结构影响较小。而如果使用红黑树,很可能一个更新操作,将会波及整个树的结构,其局部性较差。因此使用SkipList更适合实现多个线程的并发处理。
         在非多线程的情况下,应当尽量使用TreeMap。此外对于并发性相对较低的并行程序可以使用Collections.synchronizedSortedMap将TreeMap进行包装,也可以提供较好的效率。对于高并发程序,应当使用ConcurrentSkipListMap,能够提供更高的并发度。
      所以在多线程程序中,如果需要对Map的键值进行排序时,请尽量使用ConcurrentSkipListMap,可能得到更好的并发度。
      注意,调用ConcurrentSkipListMap的size时,由于多个线程可以同时对映射表进行操作,所以映射表需要遍历整个链表才能返回元素个数,这个操作是个O(log(n))的操作。

ConcurrentSkipListMap存储结构

集合框架 Map篇(5)----ConcurrentSkipListMap_第1张图片
                                                                      ConcurrentSkipListMap存储结构图

跳跃表(SkipList):(如上图所示)
1.多条链构成,是关键字升序排列的数据结构;
2.包含多个级别,一个head引用指向最高的级别,最低(底部)的级别,包含所有的key;
3.每一个级别都是其更低级别的子集,并且是有序的;
4.如果关键字 key在 级别level=i中出现,则,level<=i的链表中都会包含该关键字key;

------------------------

ConcurrentSkipListMap主要用到了Node和Index两种节点的存储方式,通过volatile关键字实现了并发的操作

 static final class Node<K,V> {
        final K key;
        volatile Object value;//value值
        volatile Node<K,V> next;//next引用

        ……

  }

static class Index<K,V> {
        final Node<K,V> node;
        final Index<K,V> down;//downy引用
       volatile Index<K,V> right;//右边引用

       ……

}


------------------------

ConcurrentSkipListMap的查找

通过SkipList的方式进行查找操作:(下图以“查找91”进行说明:)

集合框架 Map篇(5)----ConcurrentSkipListMap_第2张图片

红色虚线,表示查找的路径,蓝色向右箭头表示right引用;黑色向下箭头表示down引用;


/get方法,通过doGet操作实现

 public V get(Object key) {
      return doGet(key);
 }

 //doGet的实现

private V doGet(Object okey) {
        Comparable<? super K> key = comparable(okey);
        Node<K,V> bound = null;
        Index<K,V> q = head;//把头结点作为当前节点的前驱节点
        Index<K,V> r = q.right;//前驱节点的右节点作为当前节点
        Node<K,V> n;
        K k;
        int c;
        for (;;) {//遍历
            Index<K,V> d;
            // 依次遍历right节点

            if (r != null && (n = r.node) != bound && (k = n.key) != null) {
                if ((c = key.compareTo(k)) > 0) {//由于key都是升序排列的,所有当前关键字大于所要查找的key时继续向右遍历
                    q = r;
                    r = r.right;
                    continue;
                } else if (c == 0) {

                    //如果找到了相等的key节点,则返回该Node的value如果value为空可能是其他并发delete导致的,于是通过另一种

                    //遍历findNode的方式再查找
                    Object v = n.value;
                    return (v != null)? (V)v : getUsingFindNode(key);
                } else
                    bound = n;
            }

            //如果一个链表中right没能找到key对应的value,则调整到其down的引用处继续查找

            if ((d = q.down) != null) {
                q = d;
                r = d.right;
            } else
                break;
        }

        // 如果通过上面的遍历方式,还没能找到key对应的value,再通过Node.next的方式进行查找

        for (n = q.node.next;  n != null; n = n.next) {
            if ((k = n.key) != null) {
                if ((c = key.compareTo(k)) == 0) {
                    Object v = n.value;
                    return (v != null)? (V)v : getUsingFindNode(key);
                } else if (c < 0)
                    break;
            }
        }
        return null;
    }
------------------------------------------------

ConcurrentSkipListMap的删除

通过SkipList的方式进行删除操作:(下图以“删除23”进行说明:)

集合框架 Map篇(5)----ConcurrentSkipListMap_第3张图片

红色虚线,表示查找的路径,蓝色向右箭头表示right引用;黑色向下箭头表示down引用;

//remove操作,通过doRemove实现,把所有level中出现关键字key的地方都delete掉

public V remove(Object key) {
        return doRemove(key, null);
 }

 final V doRemove(Object okey, Object value) {
        Comparable<? super K> key = comparable(okey);
        for (;;) {
            Node<K,V> b = findPredecessor(key);//得到key的前驱(就是比key小的最大节点)
            Node<K,V> n = b.next;//前驱节点的next引用
            for (;;) {//遍历
                if (n == null)//如果next引用为空,直接返回
                    return null;
                Node<K,V> f = n.next;
                if (n != b.next)                    // 如果两次获得的b.next不是相同的Node,就跳转到第一层循环重新获得b和n

                    break;
                Object v = n.value;
                if (v == null) {                    // 当n被其他线程delete的时候,其value==null,此时做辅助处理,并重新获取b和n

                    n.helpDelete(b, f);
                    break;
                }
                if (v == n || b.value == null)      // 当其前驱被delet的时候直接跳出,重新获取b和n

                    break;
                int c = key.compareTo(n.key);
                if (c < 0)
                    return null;
                if (c > 0) {//当key较大时就继续遍历
                    b = n;
                    n = f;
                    continue;
                }
                if (value != null && !value.equals(v))
                    return null;
                if (!n.casValue(v, null))
                    break;
                if (!n.appendMarker(f) || !b.casNext(n, f))//casNext方法就是通过比较和设置b(前驱)的next节点的方式来实现删除操作
                    findNode(key);                  // 通过尝试findNode的方式继续find

                else {
                    findPredecessor(key);           // Clean index
                    if (head.right == null)   //如果head的right引用为空,则表示不存在该level
                        tryReduceLevel();
                }

                return (V)v;

            }

        }

    }
-------------------------------------

ConcurrentSkipListMap的插入


通过SkipList的方式进行插入操作:(下图以“添加55”的两种情况,进行说明:)

集合框架 Map篇(5)----ConcurrentSkipListMap_第4张图片

在level=2(该level存在)的情况下添加55的图示:只需在level<=2的合适位置插入55即可
--------

集合框架 Map篇(5)----ConcurrentSkipListMap_第5张图片

在level=4(该level不存在,图示level4是新建的)的情况下添加55的情况:首先新建level4,然后在level<=4的合适位置插入55

-----------

//put操作,通过doPut实现

 public V put(K key, V value) {
        if (value == null)
            throw new NullPointerException();
        return doPut(key, value, false);
 } 

private V doPut(K kkey, V value, boolean onlyIfAbsent) {
        Comparable<? super K> key = comparable(kkey);
        for (;;) {
            Node<K,V> b = findPredecessor(key);//前驱

            Node<K,V> n = b.next;

           //定位的过程就是和get操作相似
            for (;;) {
                if (n != null) {
                    Node<K,V> f = n.next;
                    if (n != b.next)               // 前后值不一致的情况下,跳转到第一层循环重新获得b和n

                        break;;
                    Object v = n.value;
                    if (v == null) {               // n被delete的情况下

                        n.helpDelete(b, f);
                        break;
                    }
                    if (v == n || b.value == null) // b 被delete的情况,重新获取b和n
                        break;
                    int c = key.compareTo(n.key);
                    if (c > 0) {
                        b = n;
                        n = f;
                        continue;
                    }
                    if (c == 0) {
                        if (onlyIfAbsent || n.casValue(v, value))
                            return (V)v;
                        else
                            break; // restart if lost race to replace value
                    }
                    // else c < 0; fall through
                }

                Node<K,V> z = new Node<K,V>(kkey, value, n);
                if (!b.casNext(n, z))
                    break;         // restart if lost race to append to b
                int level = randomLevel();//得到一个随机的level作为该key-value插入的最高level
                if (level > 0)
                    insertIndex(z, level);//进行插入操作
                return null;
            }
        }
    }


 /**
     * 获得一个随机的level值

     */
    private int randomLevel() {
        int x = randomSeed;
        x ^= x << 13;
        x ^= x >>> 17;
        randomSeed = x ^= x << 5;
        if ((x & 0x8001) != 0) // test highest and lowest bits
            return 0;
        int level = 1;
        while (((x >>>= 1) & 1) != 0) ++level;
        return level;
    }

//执行插入操作:如上图所示,有两种可能的情况:

//1.当level存在时,对level<=n都执行insert操作

//2.当level不存在(大于目前的最大level)时,首先添加新的level,然后在执行操作1 

private void insertIndex(Node<K,V> z, int level) {
        HeadIndex<K,V> h = head;
        int max = h.level;

        if (level <= max) {//情况1
            Index<K,V> idx = null;
            for (int i = 1; i <= level; ++i)//首先得到一个包含1~level个级别的down关系的链表,最后的inx为最高level
                idx = new Index<K,V>(z, idx, null);
            addIndex(idx, h, level);//把最高level的idx传给addIndex方法

        } else { // 情况2 增加一个新的级别

            level = max + 1;
            Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
            Index<K,V> idx = null;
            for (int i = 1; i <= level; ++i)//该步骤和情况1类似
                idxs[i] = idx = new Index<K,V>(z, idx, null);

            HeadIndex<K,V> oldh;
            int k;
            for (;;) {

                oldh = head;
                int oldLevel = oldh.level;
                if (level <= oldLevel) { // lost race to add level
                    k = level;
                    break;
                }
                HeadIndex<K,V> newh = oldh;
                Node<K,V> oldbase = oldh.node;
                for (int j = oldLevel+1; j <= level; ++j)
                    newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);//创建新的
                if (casHead(oldh, newh)) {
                    k = oldLevel;
                    break;
                }
            }
            addIndex(idxs[k], oldh, k);
        }
    }

/**
     *在1~indexlevel层中插入数据 

     */
    private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
        //  insertionLevel 代表要插入的level,该值会在indexLevel~1间遍历一遍

        int insertionLevel = indexLevel;
        Comparable<? super K> key = comparable(idx.node.key);
        if (key == null) throw new NullPointerException();

        // 和get操作类似,不同的就是查找的同时在各个level上加入了对应的key

        for (;;) {
            int j = h.level;
            Index<K,V> q = h;
            Index<K,V> r = q.right;
            Index<K,V> t = idx;
            for (;;) {
                if (r != null) {
                    Node<K,V> n = r.node;
                    // compare before deletion check avoids needing recheck
                    int c = key.compareTo(n.key);
                    if (n.value == null) {
                        if (!q.unlink(r))
                            break;
                        r = q.right;
                        continue;
                    }
                    if (c > 0) {
                        q = r;
                        r = r.right;
                        continue;
                    }
                }

                if (j == insertionLevel) {//在该层level中执行插入操作
                    // Don't insert index if node already deleted
                    if (t.indexesDeletedNode()) {
                        findNode(key); // cleans up
                        return;
                    }
                    if (!q.link(r, t))//执行link操作,其实就是inset的实现部分
                        break; // restart
                    if (--insertionLevel == 0) {
                        // need final deletion check before return
                        if (t.indexesDeletedNode())
                            findNode(key);
                        return;
                    }
                }

                if (--j >= insertionLevel && j < indexLevel)//key移动到下一层level
                    t = t.down;
                q = q.down;
                r = q.right;
            }
        }
    }

你可能感兴趣的:(Concurrent)