求有向图的强连通分量(scc):Tarjan算法

1,在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected component)。
2,下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
求有向图的强连通分量(scc):Tarjan算法

3,Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义几个关键数组:
int DFN[MAX]; //记录节点u第一次被访问时的步数
int LOW[MAX]; //记录与节点u和u的子树节点中最早的步数
接下来是对算法流程的演示。
从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。
求有向图的强连通分量(scc):Tarjan算法

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。
求有向图的强连通分量(scc):Tarjan算法

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。
求有向图的强连通分量(scc):Tarjan算法

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。
求有向图的强连通分量(scc):Tarjan算法

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

分析:
运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

4,实例代码:
#include<iostream>
#include<vector>
using namespace std;

const int MAX=10001;

int Stop;//栈中的元素个数
int cnt;//记录连通分量的个数
int visitNum;//记录遍历的步数
int DFN[MAX]; //记录节点u第一次被访问时的步数
int LOW[MAX]; //记录与节点u和u的子树节点中最早的步数
bool instack[MAX];//记录节点u是否在栈中
int Stap[MAX];//栈
int Belong[MAX];//记录每个节点属于的强连通分量编号

int N;//节点个数

vector<int> tree[MAX];

void tarjan(int i)
{
	int j;
	DFN[i]=LOW[i]=++visitNum;
	instack[i]=true;
	Stap[++Stop]=i;//将当前节点压入栈中
	for (unsigned k=0;k<tree[i].size();k++)
	{
		j=tree[i][k];
		if (!DFN[j]) //j还没有被访问过
		{
			tarjan(j);
			//父节点是子节点的子节点
			if (LOW[j]<LOW[i])
				LOW[i]=LOW[j];
		}
		//与j相连,但是j已经被访问过,且还在栈中
		//用子树节点更新节点第一次出现的时间
		else if (instack[j] && DFN[j]<LOW[i])
			LOW[i]=DFN[j];
	}
	//节点i是强连通分量的根
	if (DFN[i]==LOW[i])
	{
		cnt++;
		//输出找到的强连通分量
		cout<<"连通分量"<<cnt<<": ";
		//退栈,直至找到根为止
		do
		{
			j=Stap[Stop--];
			instack[j]=false;
			cout<<j<<" ";
			Belong[j]=cnt;
		}
		while (j!=i);
		cout<<endl;
	}
}
void solve()
{
	Stop=cnt=visitNum=0;
	memset(DFN,0,sizeof(DFN));
	for (int i=1;i<=N;i++)
		if (!DFN[i])//有可能图不是连通图
			tarjan(i);
}

int main()
{
    N=6;
    tree[1].push_back(3);
    tree[1].push_back(2);
    tree[2].push_back(4);
    tree[3].push_back(5);
    tree[3].push_back(4);
    tree[4].push_back(1);
    tree[4].push_back(6);
    tree[5].push_back(6);
    solve();
    for(int i=1;i<=N;i++)
        cout<<Belong[i]<<" ";
    cout<<endl;
    return 0;
}

你可能感兴趣的:(算法,J#)