- 4.连续小波变换的示例应用
赵孝正
小波分析人工智能算法机器学习
目录引言0数据介绍1短时傅里叶1.1缩小窗口2小波分析2.1小波变换步骤(CWT)2.1.1比较过程2.1.2系数产生过程2.2实验结果3.参考资料引言将演示如何使用连续小波变换,对信号进行理想的时频分析。许多自然发生的信号具有相似的特征,它们由缓慢变化的成分组成,中间穿插着剧变,小波在分析这类信号时非常有用,0数据介绍下面是一段地震信号,2次地震分别发生在30min和35min处。该信号以1Hz
- Python计算离差与标准计分
Mr数据杨
Python数据分析师python数据分析开发语言
离差和标准计分是统计学和数据分析中的重要概念,广泛应用于各类数据集的处理和分析过程中。掌握离差和标准计分有助于理解数据的分布情况,评估数据在群体中的相对位置,尤其在处理大规模数据或数据分析时非常重要。本教程将通过详细解释离差与标准计分的概念,并结合实际示例,帮助读者在编程环境下应用这些知识。离差与标准计分不仅在统计学中有理论意义,在实际工作场景中,比如教育测评、金融分析、科研实验等领域,也能帮助数
- 1.6 在7类LSA中利用FA地址解决次优路径问题
2301_80344964
网络
1.实验目的了解OSPF的7类LSA的FA地址的作用2.实验拓扑3.基础配置R1[R1]discu[V200R003C00]#sysnameR1#interfaceGigabitEthernet0/0/0ipaddress10.0.13.1255.255.255.0#interfaceGigabitEthernet0/0/1ipaddress10.0.12.1255.255.255.0#inter
- Evaluation of OpenAI o1: Opportunities and Challenges of AGI
UnknownBody
LLMDailyLLMEvaluationagi人工智能大数据语言模型
本文是LLM系列文章,针对《EvaluationofOpenAIo1:OpportunitiesandChallengesofAGI》的翻译。OpenAIo1评估:AGI的机遇和挑战摘要1引言1.1背景:o1的新功能2研究范围和使用的公共数据集3相关工作4实验和观察5讨论5.1LLMAgents和o1:推进科学与工程中的问题解决6结论摘要这项全面的研究评估了OpenAI的o1-preview大型语
- 数字图像处理——matlab实现 图像灰度等级化(2个等级,4个等级,8个等级,16个等级,32个等级,64个等级,128个等级的灰度图)
miilue
实验报告图像处理MATLAB图像处理灰度等级化RGB转灰度代码实现
图像灰度等级化相关知识读者可以自行百度,本篇文章只放matlab的实现代码。在做这个实验时,在网上没有找到好用的代码,自己后来试了一些他人的方法,最后修改完善得到了该篇文章的代码,希望有所帮助。My=imread('E:\informt\lesson\数字图像处理与安全\图像集\Fruit.bmp');%读取图像MyGrayPic=rgb2gray(My);%灰度图像等级化holdon;figur
- 如何开启Chrome浏览器、Edge浏览器、Firefox浏览器的实验室功能
new code Boy
chromeedgefirefox
Chrome浏览器:chrome://flagsEdge浏览器:edge://flagsFirefox浏览器:about:config以下Chrome、Edge常用配置开启并行下载:enable-parallel-downloading标签页分组功能:tab-groups开启阅读模式:enable-reader-mode开启深色模式:enable-force-dark开启全局媒体播放控制:glob
- 机器学习day3
ኈ ቼ ዽ
机器学习人工智能
自定义数据集使用框架的线性回归方法对其进行拟合importmatplotlib.pyplotaspltimporttorchimportnumpyasnp#1.散点输入#1、散点输入#定义输入数据data=[[-0.5,7.7],[1.8,98.5],[0.9,57.8],[0.4,39.2],[-1.4,-15.7],[-1.4,-37.3],[-1.8,-49.1],[1.5,75.6],[0
- 深度强化学习在高频交易中的动态策略优化与收益提升
二进制独立开发
非纯粹GenAIGenAI与Pythonpython人工智能神经网络自然语言处理生成对抗网络金融数据挖掘
文章目录1.高频交易的核心挑战与强化学习的适应性1.1高频交易中的核心问题1.2强化学习的适配性分析2.基于深度Q网络(DQN)的高频交易策略设计2.1状态空间构建:从LOB到特征工程2.2动作空间与奖励函数设计2.3DQN模型架构与训练优化3.业务视角下的策略优化与风险管理3.1策略有效性验证3.2实时部署与延迟优化3.3合规与伦理考量4.实验:基于NASDAQLOB数据的策略对比4.1数据集与
- 计组实验报告-阵列乘法器设计
厂里英才
作业logisim计算机组成原理
目录一、实验目的二、实验原理(1)实验内容与要求(2)原理(3)斜向进位阵列乘法器的原理图三、实验步骤与运行结果四、附录一、实验目的①利用1位全加器做子电路构成5×5位横向进位或斜向进位的原码阵列乘法器。②分析斜向进位和横向进位的时间延迟。二、实验原理(1)实验内容与要求分析横向进位或斜向进位5×5位原码阵列乘法器所需要的全加器个数和总延时,自主设计成本最低总延时最少的原码阵列乘法器,完成实验报告
- KNOWLEDGE UNLEARNING FOR MITIGATING PRIVACY RISKS IN LANGUAGE MODELS
绒绒毛毛雨
语言模型人工智能自然语言处理
文章目录摘要1引言2相关工作2.1语言模型的隐私方法2.2机器去学习2.3语言模型中的记忆3语言模型中的知识去学习3.1方法论3.2量化语言模型的隐私风险4实验4.1模型、数据集和配置4.2主要实验4.3知识去学习的分析5结论摘要预训练语言模型(LMs)在初始预训练过程中记忆了大量知识,包括可能侵犯个人隐私和身份的信息。以往针对语言模型隐私问题的研究主要集中在数据预处理和差分隐私方法上,这两者都需
- 速看:华为云云原生实践与应用大阅兵
CSDN云原生
分布式java编程语言大数据人工智能
出品|CSDN云原生2022年6月9日,CSDN云原生系列在线峰会第8期“华为云云原生实践与应用峰会”盛大举行,本期峰会出品人、中信银行技术专家、华为云MVP马超携手华为云数字化平台技术专家高红霞、边缘云创新实验室主任工程师郑子木、微服务产品经理丛琳琳、应用魔方AppCube产品经理邢博洋,全面分享了华为云的云原生应用实践。下面先简单回顾本期峰会的内容。演讲视频、完整文章将在本公众号陆续发布,敬请
- VxLAN 分布式对称 IRB 实验
jiecy
数通运维分布式网络运维
一、拓扑描述:CE1上的VRFA上开启用户A的vlan10、20网关,CE2的VRFA上开启用户A的vlan20、30的网关要求:全域互访二、配置思路:1、网络侧配置underlayer底层互通1)CE1、2配置IGP,让loo0互通2)CE1、2建立BGPEVPN邻居,建立EVPN路由传输通道(全局要先开启e-overlayenable)2、配置overlayer上层互通1)网络侧:a、配置BD
- H3C-交换机telnet远程配置案例
仓鼠OO
网络配置(H3C)H3C网络运维
目录1.telnet简述2.网络拓扑3.实验需求4.配置步骤4.1网络基本配置4.2telnet配置5.telnet测试远程6.小结1.telnet简述Telnet是远程登录服务的一个协议,该协议定义了远程登录用户与服务器交互的方式。它允许用户在一台联网的计算机上登录到一个远程分时系统中,然后像使用自己的计算机一样使用该远程系统。Telnet使用客户-服务器模式进行工作。在用户端,需要启动一个Te
- 论文阅读:DeepFake-Adapter: Dual-Level Adapter for DeepFake Detection(Deepfake模型快速调参)
海拉鲁的小厨娘
读论文论文阅读
一、论文信息论文名称:DeepFake-Adapter:Dual-LevelAdapterforDeepFakeDetection作者团队:项目主页:https://github.com/rshaojimmy/DeepFake-Adapter(代码暂未开源)二、动机与创新动机:目前的deepfake检测模型泛化能力差,将其归因于过拟合于低级的伪造模式,现有的deepfake检测方法仅关注低级别的伪
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- PointNet++改进策略 :模块改进 | OA-CNNs | , 全自适应3D稀疏卷积神经网络(OA-CNNs),超越基于Transformer的模型,同时显著降低计算和内存成本
我是瓦力
PointNet++改进策略3dtransformer深度学习计算机视觉人工智能神经网络
目录介绍核心思想及其实现引入空间自适应感受野自适应关系卷积(ARConv)网络整体架构设计训练和验证实验与评估如何改进PointNet++引入空间自适应感受野引入自适应关系学习利用自适应聚合器论文题目:OA-CNNs:Omni-AdaptiveSparseCNNsfor3DSemanticSegmentation发布期刊:CVPR2024作者地址:1香港中文大学2香港大学3香港中文大学,深圳4HI
- 国外各领域专家学者的一些谏言:如何使AI代理架构变得成功
强哥之神
人工智能语言模型AI代理智能体大模型Agent
最近在研究AI代理架构为什么比较难落地,看到有一篇文章是关于各领域专家学者对AI代理架构的一些看法,值得关注。我将其整理成了中文,大家可一起细品各家观点,全文如下。代理型人工智能被寄予厚望,其潜力在于能够独立完成复杂任务。然而,目前该领域的炒作热潮远超实际成功案例,背后原因复杂多样。“2024年,AI代理已成为众多供应商的营销热词。但对于用户组织而言,代理技术还处于早期探索阶段,充满好奇心与实验性
- origin软件有python好用吗_Origin 2021大大改进了与Python的交互
weixin_39922534
经常收到同学咨询如何在Origin中管理下载Python包的问题,可以翻看上期专栏Origin2021对使用Python编程进行了重大改进。这些改进主要包括:新的originpro程序包,可使用Python语言轻松访问Origin对象和数据Python代码编辑器IDE现支持自动补完和调试功能可通过脚本或图形用户界面来安装和管理Python包设置列值,拟合函数和文本对象中使用Python函数从Lab
- 线性回归——最小二乘法代数详细计算过程
在天愿作比翼鸟在地愿为连理枝
机器学习和人工智能学习概述线性回归最小二乘法机器学习
Reference:动手实战人工智能AIByDoing关于矩阵方法的求解可参考:最小二乘法矩阵详细计算过程基本定义:通过找到一条直线去拟合数据点的分布趋势的过程,就是线性回归的过程。在上图呈现的这个过程中,通过找到一条直线去拟合数据点的分布趋势的过程,就是线性回归的过程。而线性回归中的「线性」代指线性关系,也就是图中所绘制的红色直线。所以,找到最适合的那一条红色直线,就成为了线性回归中需要解决的目
- Pytorch实现论文:对GAN的交替优化
LJ1147517021
GAN系列生成对抗网络计算机视觉人工智能pytorch机器学习深度学习
简介这次带来的是ClosingtheGapBetweenTheoryandPracticeDuringAlternatingOptimizationforGANs,Gans交替优化中缩小理论与实践的差距这篇论文的一个核心代码在ACGAN模型上的效果测试,核心是修改了损失函数部分的计算。作者的实验是在StyleGAN上进行的。论文简介论文题目:ClosingtheGapBetweenTheoryan
- NCNN推理
呆呆珝
推理框架c++人工智能
1.前言ncnn是一个高性能的神经网络前向计算框架,专门针对移动设备和嵌入式设备设计。它由腾讯优图实验室开发,旨在提供高效的神经网络推理能力,特别是在资源受限的环境中,如智能手机和嵌入式系统。ncnn被广泛应用于移动端和嵌入式设备上的各种深度学习应用,包括但不限于:图像分类/目标检测/语义分割/人脸识别/图像生成与处理2.NCNN的CMakeLists.txt编写ncnn的头文件,链接文件,静态链
- C# OpenCV机器视觉:卡尔曼滤波
pchmi
C#OpenCV机器视觉c#opencv人工智能机器视觉卡尔曼滤波
在一个阳光有些慵懒的午后,阿强像往常一样窝在他那被各种电子元件和乱糟糟电线堆满的实验室里,百无聊赖地翻看着一本本厚重的技术书籍。突然,一阵急促的敲门声打破了平静,阿强趿拉着拖鞋,嘟囔着跑去开门,只见好友二胖火急火燎地冲了进来,手里还挥舞着一个小型无人机模型。“阿强啊,我这新买的无人机出大问题了!”二胖气喘吁吁地说道,额头上豆大的汗珠滚落,“我本来想在公园里拍点酷炫的飞行视频,结果它在空中晃得厉害,
- java jdbc实验_实验七Java之Jdbc
weixin_39969976
javajdbc实验
实验七Jdbc编程1.实验目的(1)掌握通过JDBC方式操作数据库的基本步骤。(2)掌握增、删、改、查记录等的方法。(3)掌握查询记录以及遍历查询结果的方法。2.实验内容实验题1学生信息管理。创建student表,包含学生的学号、姓名、年龄信息。①根据学号,可以查询到学生的姓名和年龄;②给定学生的学号、姓名、年龄,在表中追加一行信息;③给定学生的学号,可以从表中删除该学生的信息;[基本要求]对上面
- 自动控制原理实验:解锁典型环节时域响应的奥秘
戒了9
人工智能网络算法课程设计
实验背景与目的在自动控制原理的学习旅程中,实验环节犹如一把钥匙,为我们打开了通往深入理解和实际应用的大门。它不仅仅是理论知识的简单验证,更是将抽象概念转化为实际认知的关键桥梁。通过实验,我们能够在实践中探索自动控制的奥秘,将书本上的公式和原理与真实的系统行为联系起来,从而深化对知识的理解,提升解决实际问题的能力。本次实验聚焦于典型环节的时域响应,这是自动控制领域中至关重要的研究内容。典型环节作为构
- 用Java提取Word文档表格数据
Word文档作为一种广泛使用的文件格式,常常承载着丰富的表格信息,这些信息可能涉及到财务报表、项目规划、实验数据记录等多方面内容。将这些表格数据提取出来,能够方便进行数据分析以及内容再创作等场景。通过使用Java实现Word文档表格数据的提取,可以确保数据处理的一致性和准确性,同时大大减少所需的时间和成本。本文将介绍如何使用Java提取Word文档中的表格数据。用Java提取Word文档表格到文本
- DSP实验五 基于MATLAB的数字滤波器设计
BeBeter」
DigitalSignalProcessingmatlab开发语言DSP
实验目的:加深对数字滤波器的常用指标和设计过程的理解。实验原理:低通滤波器的常用指标:补充1、buttord函数:生成巴特沃斯滤波器的阶次N和截止频率Wc截止频率Wc:幅度响应衰减为为原来的0.707时的频率点,衰减大小为3dB阶次N:阶次越高,在截止频率两侧衰减越快,滤波器越复杂,成本越高[N,Wc]=buttord(Wp,Ws,Rp,Rs,'s');有参数‘s’时,表示生成巴特沃斯模拟滤波器的
- linux 实验感悟_linux实训总结(共10篇).docx
脑叔
linux实验感悟
linux实训总结(共10篇)实习报告实习性质:linux操作系统课程实习学生姓名:xx专业班级:xx指导教师:xx实习时间:XX年12月16日-XX年12月20日实习地点:4112、4212、4312、4412重庆工程职业技术学院学生实习考核表目录1.实习目的.....................................................................
- Swin-Unet:图像分割领域的强大工具
陈凯韵
Swin-Unet:图像分割领域的强大工具【下载地址】Swin-UnetPyTorch代码仓库本仓库提供了一个基于PyTorch实现的Swin-Unet模型的代码资源。Swin-Unet是一种结合了SwinTransformer和U-Net结构的深度学习模型,适用于图像分割任务。该代码可以帮助研究人员和开发者快速上手并应用Swin-Unet模型进行图像分割实验项目地址:https://gitcod
- ArcGIS小白入门——ArcMap应用基础讲解
YXGiser
Arcgisarcgis
一、实验目的通过实验操作,掌握ArcMap软件的基础操作,主要包括地图文档打开与保存、图层显示与数据查看、简单符号化、要素标识、注记添加、地图元素添加、地图排版与打印,对ArcMap软件的基础操作加以熟悉。二、实验数据(1)地图文档文件(airport.mxd);(2)源数据文件(airport.gdb),其中各图层含义如下:“Schools”表示初级、中级、高级和私立学校的位置;“Runways
- 在KubeFATE中定制化部署联邦学习组件的深入分析
亨利笔记
dockerkubernetes数据库java大数据
题图摄于国家大剧院(本文作者系VMware中国研发云原生实验室架构师,联邦学习开源项目KubeFATE/FATE-Operator维护者。)需要加入KubeFATE开源项目讨论群的同学,请关注亨利笔记公众号后回复“kubefate”即可。相关文章在JuypterNotebook中构建联邦学习任务云原生联邦学习平台KubeFATE原理详解用KubeFATE在K8s上部署联邦学习FATEv1.5使用D
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比