Android的内存机制

一、 Android的内存机制

    Android的程序由Java语言编写,所以Android的内存管理与Java的内存管理相似。程序员通过new为对象分配内存,所有 对象在java堆内分配空间;然而对象的释放是由垃圾回收器来完成的。C/C++中的内存机制是“谁污染,谁治理”,java的就比较人性化了,给我们请 了一个专门的清洁工(GC)。

    那么GC怎么能够确认某一个对象是不是已经被废弃了呢?Java采用了有向图的原理。Java将引用关系考虑为图的有向边,有向边从引用者 指向引用对象。线程对象可以作为有向图的起始顶点,该图就是从起始顶点开始的一棵树,根顶点可以到达的对象都是有效对象,GC不会回收这些对象。如果某个 对象 (连通子图)与这个根顶点不可达(注意,该图为有向图),那么我们认为这个(这些)对象不再被引用,可以被GC回收。

二、Android的内存溢出

    Android的内存溢出是如何发生的?

    Android的虚拟机是基于寄存器的Dalvik,它的最大堆大小一般是16M,有的机器为24M。因此我们所能利用的内存空间是有限的。如果我们的内存占用超过了一定的水平就会出现OutOfMemory的错误。

为什么会出现内存不够用的情况呢?我想原因主要有两个:

  • 由于我们程序的失误,长期保持某些资源(如Context)的引用,造成内存泄露,资源造成得不到释放。
  • 保存了多个耗用内存过大的对象(如Bitmap),造成内存超出限制。

三、万恶的static

    static是Java中的一个关键字,当用它来修饰成员变量时,那么该变量就属于该类,而不是该类的实例。所以用static修饰的变量,它的生命周期是很长的,如果用它来引用一些资源耗费过多的实例(Context的情况最多),这时就要谨慎对待了。

  
  
   
   
   
   
  1. public class ClassName {  
  2.      private static Context mContext;  
  3.      //省略  
  4. }  

以上的代码是很危险的,如果将Activity赋值到么mContext的话。那么即使该Activity已经onDestroy,但是由于仍有对象保存它的引用,因此该Activity依然不会被释放。
 

    我们举Android文档中的一个例子。

  
  
   
   
   
   
  1. private static Drawable sBackground;  
  2.      
  3.  @Override  
  4.  protected void onCreate(Bundle state) {  
  5.    super.onCreate(state);  
  6.      
  7.    TextView label = new TextView(this);  
  8.    label.setText("Leaks are bad");  
  9.      
  10.    if (sBackground == null) {  
  11.      sBackground = getDrawable(R.drawable.large_bitmap);  
  12.    }  
  13.    label.setBackgroundDrawable(sBackground);  
  14.      
  15.    setContentView(label);  
  16.  }  

    sBackground, 是一个静态的变量,但是我们发现,我们并没有显式的保存Contex的引用,但是,当Drawable与 View连接之后,Drawable就将View设置为一个回调,由于View中是包含Context的引用的,所以,实际上我们依然保存了 Context的引用。这个引用链如下:

    Drawable->TextView->Context

    所以,最终该Context也没有得到释放,发生了内存泄露。

    如何才能有效的避免这种引用的发生呢?

    第一,应该尽量避免static成员变量引用资源耗费过多的实例,比如Context。

    第二、Context尽量使用Application Context,因为Application的Context的生命周期比较长,引用它不会出现内存泄露的问题。

    第三、使用WeakReference代替强引用。比如可以使用WeakReference<Context> mContextRef;

    该部分的详细内容也可以参考Android文档中Article部分。

四、都是线程惹的祸

    线程也是造成内存泄露的一个重要的源头。线程产生内存泄露的主要原因在于线程生命周期的不可控。我们来考虑下面一段代码。

  
  
   
   
   
   
  1. public class MyActivity extends Activity {  
  2.     @Override  
  3.     public void onCreate(Bundle savedInstanceState) {  
  4.         super.onCreate(savedInstanceState);  
  5.         setContentView(R.layout.main);  
  6.         new MyThread().start();  
  7.     }  
  8.   
  9.     private class MyThread extends Thread{  
  10.         @Override  
  11.         public void run() {  
  12.             super.run();  
  13.             //do somthing  
  14.         }  
  15.     }  
  16. }  

    这段代码很平常也很简单,是我们经常使用的形式。我们思考一个问题:假设MyThread的run函数是一个很费时的操作,当我们开启该线 程后,将设备的横屏变为了竖屏,一般情况下当屏幕转换时会重新创建Activity,按照我们的想法,老的Activity应该会被销毁才对,然而事实上 并非如此。

    由于我们的线程是Activity的内部类,所以MyThread中保存了Activity的一个引用,当MyThread的run函数没有结束时,MyThread是不会被销毁的,因此它所引用的老的Activity也不会被销毁,因此就出现了内存泄露的问题。

Android的内存机制

 

    有些人喜欢用Android提供的AsyncTask,但事实上AsyncTask的问题更加严重,Thread只有在run函数不结束时才出现这种内 存泄露问题,然而AsyncTask内部的实现机制是运用了ThreadPoolExcutor,该类产生的Thread对象的生命周期是不确定的,是应 用程序无法控制的,因此如果AsyncTask作为Activity的内部类,就更容易出现内存泄露的问题。
 

    这种线程导致的内存泄露问题应该如何解决呢?

    第一、将线程的内部类,改为静态内部类。
 

    第二、在线程内部采用弱引用保存Context引用。

    解决的模型如下:

  
  
   
   
   
   
  1. public abstract class WeakAsyncTask<Params, Progress, Result, WeakTarget> extends  
  2.         AsyncTask<Params, Progress, Result> {  
  3.     protected WeakReference<WeakTarget> mTarget;  
  4.   
  5.     public WeakAsyncTask(WeakTarget target) {  
  6.         mTarget = new WeakReference<WeakTarget>(target);  
  7.     }  
  8.   
  9.     /** {@inheritDoc} */  
  10.     @Override  
  11.     protected final void onPreExecute() {  
  12.         final WeakTarget target = mTarget.get();  
  13.         if (target != null) {  
  14.             this.onPreExecute(target);  
  15.         }  
  16.     }  
  17.   
  18.     /** {@inheritDoc} */  
  19.     @Override  
  20.     protected final Result doInBackground(Params... params) {  
  21.         final WeakTarget target = mTarget.get();  
  22.         if (target != null) {  
  23.             return this.doInBackground(target, params);  
  24.         } else {  
  25.             return null;  
  26.         }  
  27.     }  
  28.   
  29.     /** {@inheritDoc} */  
  30.     @Override  
  31.     protected final void onPostExecute(Result result) {  
  32.         final WeakTarget target = mTarget.get();  
  33.         if (target != null) {  
  34.             this.onPostExecute(target, result);  
  35.         }  
  36.     }  
  37.   
  38.     protected void onPreExecute(WeakTarget target) {  
  39.         // No default action  
  40.     }  
  41.   
  42.     protected abstract Result doInBackground(WeakTarget target, Params... params);  
  43.   
  44.     protected void onPostExecute(WeakTarget target, Result result) {  
  45.         // No default action  
  46.     }  
  47. }  



    事实上,线程的问题并不仅仅在于内存泄露,还会带来一些灾难性的问题。由于本文讨论的是内存问题,所以在此不做讨论。

 

由于51cto不让我一次传完,说我的字数太多了,所以分开传了。 

五、超级大胖子Bitmap

    可以说出现OutOfMemory问题的绝大多数人,都是因为Bitmap的问题。因为Bitmap占用的内存实在是太多了,它是一个“超级大胖子”,特别是分辨率大的图片,如果要显示多张那问题就更显著了。
 

    如何解决Bitmap带给我们的内存问题?

    第一、及时的销毁。

    虽然,系统能够确认Bitmap分配的内存最终会被销毁,但是由于它占用的内存过多,所以很可能会超过java堆的限制。因此,在用完 Bitmap时,要及时的recycle掉。recycle并不能确定立即就会将Bitmap释放掉,但是会给虚拟机一个暗示:“该图片可以释放了”。
 

    第二、设置一定的采样率。

    有时候,我们要显示的区域很小,没有必要将整个图片都加载出来,而只需要记载一个缩小过的图片,这时候可以设置一定的采样率,那么就可以大大减小占用的内存。如下面的代码:

  
  
   
   
   
   
  1.  private ImageView preview;  
  2.  BitmapFactory.Options options = new BitmapFactory.Options();  
  3.  options.inSampleSize = 2;//图片宽高都为原来的二分之一,即图片为原来的四分之一  
  4.  Bitmap bitmap = BitmapFactory.decodeStream(cr.openInputStream(uri), null, options);  
  5. preview.setImageBitmap(bitmap);  

    第三、巧妙的运用软引用(SoftRefrence)

    有些时候,我们使用Bitmap后没有保留对它的引用,因此就无法调用Recycle函数。这时候巧妙的运用软引用,可以使Bitmap在内存快不足时得到有效的释放。如下例:

  
  
   
   
   
   
  1. /**本例子为博主随手一写,来说明用法,并未验证*/  
  2. private class MyAdapter extends BaseAdapter {  
  3.   
  4.     private ArrayList<SoftReference<Bitmap>> mBitmapRefs = new ArrayList<SoftReference<Bitmap>>();  
  5.     private ArrayList<Value> mValues;  
  6.     private Context mContext;  
  7.     private LayoutInflater mInflater;  
  8.   
  9.     MyAdapter(Context context, ArrayList<Value> values) {  
  10.         mContext = context;  
  11.         mValues = values;  
  12.         mInflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);  
  13.     }  
  14.     public int getCount() {  
  15.         return mValues.size();  
  16.     }  
  17.   
  18.     public Object getItem(int i) {  
  19.         return mValues.get(i);  
  20.     }  
  21.   
  22.     public long getItemId(int i) {  
  23.         return i;  
  24.     }  
  25.   
  26.     public View getView(int i, View view, ViewGroup viewGroup) {  
  27.         View newView = null;  
  28.         if(view != null) {  
  29.             newView = view;  
  30.         } else {  
  31.             newView =(View)mInflater.inflate(R.layout.image_view, false);  
  32.         }  
  33.   
  34.         Bitmap bitmap = BitmapFactory.decodeFile(mValues.get(i).fileName);  
  35.         mBitmapRefs.add(new SoftReference<Bitmap>(bitmap));     //此处加入ArrayList  
  36.         ((ImageView)newView).setImageBitmap(bitmap);  
  37.   
  38.         return newView;  
  39.     }  
  40. }  

六、行踪诡异的Cursor

    Cursor是Android查询数据后得到的一个管理数据集合的类,正常情况下,如果查询得到的数据量较小时不会有内存问题,而且虚拟机能够保证Cusor最终会被释放掉。

    然而如果Cursor的数据量特表大,特别是如果里面有Blob信息时,应该保证Cursor占用的内存被及时的释放掉,而不是等待GC来 处理。并且Android明显是倾向于编程者手动的将Cursor close掉,因为在源代码中我们发现,如果等到垃圾回收器来回收时,会给用户以错误 提示。

    所以我们使用Cursor的方式一般如下:

  
  
   
   
   
   
  1. Cursor cursor = null;  
  2. try {  
  3.     cursor = mContext.getContentResolver().query(uri,null, null,null,null);  
  4.     if(cursor != null) {  
  5.         cursor.moveToFirst();  
  6.         //do something  
  7.     }  
  8. } catch (Exception e) {  
  9.     e.printStackTrace();    
  10. } finally {  
  11.     if (cursor != null) {  
  12.        cursor.close();  
  13.     }  
  14. }  

    有一种情况下,我们不能直接将Cursor关闭掉,这就是在CursorAdapter中应用的情况,但是注意,CursorAdapter在Acivity结束时并没有自动的将Cursor关闭掉,因此,你需要在onDestroy函数中,手动关闭。

  
  
   
   
   
   
  1. @Override  
  2. protected void onDestroy() {        
  3.     if (mAdapter != null && mAdapter.getCurosr() != null) {  
  4.         mAdapter.getCursor().close();  
  5.     }  
  6.     super.onDestroy();   
  7. }  

  CursorAdapter中的changeCursor函数,会将原来的Cursor释放掉,并替换为新的Cursor,所以你不用担心原来的Cursor没有被关闭。

  你可能会想到使用Activity的managedQuery来生成Cursor,这样Cursor就会与Acitivity的生命周期一致了,多么完美的解决方法!然而事实上managedQuery也有很大的局限性。

    managedQuery生成的Cursor必须确保不会被替换,因为可能很多程序事实上查询条件都是不确定的,因此我们经常会用新查询的Cursor来替换掉原先的Cursor。因此这种方法适用范围也是很小。

七、其它要说的。
 

    其实,要减小内存的使用,其实还有很多方法和要求。比如不要使用整张整张的图,尽量使用9path图片。Adapter要使用convertView等等,好多细节都可以节省内存。这些都需要我们去挖掘,谁叫Android的内存不给力来着。

你可能感兴趣的:(Android的内存机制)