Jaro–Winkler distance

From Wikipedia, the free encyclopedia
  (Redirected from  Jaro-Winkler distance)
This article is about the measure. For other uses, see  Jaro.
This article may contain original researchPlease improve it by verifying the claims made and adding inline citations. Statements consisting only of original research may be removed. (May 2013)
The topic of this article may not meet Wikipedia's general notability guidelinePlease help to establish notability by adding reliable, secondary sources about the topic. If notability cannot be established, the article is likely to be merged, redirected, or deleted.
Find sources: "Jaro–Winkler distance" – news · books · scholar · JSTOR · free images
 (May 2013)

In computer science and statistics, the Jaro–Winkler distance (Winkler, 1990) is a measure of similarity between two strings. It is a variant of the Jaro distance metric (Jaro, 1989, 1995) and mainly[citation needed] used in the area ofrecord linkage (duplicate detection). The higher the Jaro–Winkler distance for two strings is, the more similar the strings are. The Jaro–Winkler distance metric is designed and best suited for short strings such as person names. The score is normalized such that 0 equates to no similarity and 1 is an exact match.

Contents

   [hide] 
  • 1 Definition
  • 2 Example
  • 3 See also
  • 4 References
  • 5 External links

Definition[edit]

The Jaro distance d_j of two given strings s_1 and s_2 is

d_j = \left\{
\begin{array}{l l}
  0 & \text{if }m = 0\\
  \frac{1}{3}\left(\frac{m}{|s_1|} + \frac{m}{|s_2|} + \frac{m-t}{m}\right) & \text{otherwise} \end{array} \right.

where:

  • m is the number of matching characters (see below);
  • t is half the number of transpositions (see below).

Two characters from s_1 and s_2 respectively, are considered matching only if they are the same and not farther than \left\lfloor\frac{\max(|s_1|,|s_2|)}{2}\right\rfloor-1.

Each character of s_1 is compared with all its matching characters in s_2. The number of matching (but different sequence order) characters divided by 2 defines the number of transpositions. For example. in comparing CRATE with TRACE, only 'R' 'A' 'E' are the matching characters, i.e. m=3. Although 'C', 'T' appear in both strings, they are farther than 1, i.e., floor(5/2)-1=1. Therefore, t=0 . In DwAyNE versus DuANE the matching letters are already in the same order D-A-N-E, so no transpositions are needed.

Jaro–Winkler distance uses a prefix scale p which gives more favourable ratings to strings that match from the beginning for a set prefix length \ell. Given two strings s_1 and s_2, their Jaro–Winkler distance d_w is:

d_w = d_j + (\ell p (1 - d_j))

where:

  • d_j is the Jaro distance for strings s_1 and s_2
  • \ell is the length of common prefix at the start of the string up to a maximum of 4 characters
  • p is a constant scaling factor for how much the score is adjusted upwards for having common prefixes. p should not exceed 0.25, otherwise the distance can become larger than 1. The standard value for this constant in Winkler's work is p = 0.1

Although often referred to as a distance metric, the Jaro–Winkler distance is actually not a metric in the mathematical sense of that term because it does not obey the triangle inequality [1].

Example[edit]

Note that Winkler's "reference" C code differs in at least two ways from published accounts of the Jaro–Winkler metric. First is his use of a typo table (adjwt) and also some optional additional tolerance for long strings.

Given the strings s_1 MARTHA and s_2  MARHTA we find:

  • m = 6
  • |s_1| = 6
  • |s_2| = 6
  • There are mismatched characters T/H and H/T leading to t = \frac{2}{2} = 1

We find a Jaro score of:

d_j = \frac{1}{3}\left(\frac{6}{6} + \frac{6}{6} + \frac{6-1}{6}\right) = 0.944

To find the Jaro–Winkler score using the standard weight p = 0.1, we continue to find:

  • \ell = 3

Thus:

d_w = 0.944 + (3 * 0.1 (1 - 0.944)) = 0.961

Given the strings s_1 DWAYNE and s_2 DUANE we find:

  • m = 4
  • |s_1| = 6
  • |s_2| = 5
  • t = 0

We find a Jaro score of:

d_j = \frac{1}{3}\left(\frac{4}{6} + \frac{4}{5} + \frac{4-0}{4}\right) = 0.822

To find the Jaro–Winkler score using the standard weight p = 0.1, we continue to find:

  • \ell = 1

Thus:

d_w = 0.822 + (1 * 0.1 (1 - 0.822)) = 0.84

Given the strings s_1 DIXON and s_2 DICKSONX we find:[further explanation needed]

D I X O N
D 1 0 0 0 0
I 0 1 0 0 0
C 0 0 0 0 0
K 0 0 0 0 0
S 0 0 0 0 0
O 0 0 0 1 0
N 0 0 0 0 1
X 0 0 0 0 0
  • m = 4 Note that the two Xs are not considered matches because they are outside the match window of 3.
  • |s_1| = 5
  • |s_2| = 8
  • t = 0

We find a Jaro score of:

d_j = \frac{1}{3}\left(\frac{4}{5} + \frac{4}{8} + \frac{4-0}{4}\right) = 0.767

To find the Jaro–Winkler score using the standard weight p = 0.1, we continue to find:

  • \ell = 2

Thus:

d_w = 0.767 + (2 * 0.1 (1 - 0.767)) = 0.813

See also[edit]

  • Levenshtein distance
  • Record linkage
  • Census

References[edit]

  • Jaro, M. A. (1989). "Advances in record linkage methodology as applied to the 1985 census of Tampa Florida". Journal of the American Statistical Association 84 (406): 414–20. doi:10.1080/01621459.1989.10478785.
  • Jaro, M. A. (1995). "Probabilistic linkage of large public health data file". Statistics in Medicine 14 (5–7): 491–8. doi:10.1002/sim.4780140510. PMID 7792443.
  • Winkler, W. E. (1990). "String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage". Proceedings of the Section on Survey Research Methods (American Statistical Association): 354–359.
  • Winkler, W. E. (2006). "Overview of Record Linkage and Current Research Directions". Research Report Series, RRS.

External links[edit]

  • Implementation & documentation in Java LingPipe. Features extensive comparison with the original strcmp.c implementation.
  • strcmp.c - Original C Implementation by the author of the algorithm
  • PHP implementation released under GPLv3.0
  • Open Source implementation in Ruby ported by hand from lucene-3.0.2. (lucene is Java product)
  • Open Source implementation in JavaScript as part of a larger project called NaturalNode for natural language processing in Node.js
  • Open Source Jaro and Jaro-Winkler Scala implementations as part of the larger stringmetric project
  • Open Source implementation in PowerShell
Categories: 
  • String similarity measures

你可能感兴趣的:(Jaro–Winkler distance)