图像腐蚀、膨胀、细化
这三个内容属于数学形态学(Mathematical Morphology),它是法国和德国的科学家在研究岩石结构时建立的一门学科。形态学的用途主要是获取物体拓扑和结构信息,它通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。在图象处理中的应用主要是:(1)利用形态学的基本运算,对图象进行观察和处理,从而达到改善图象质量的目的;(2)描述和定义图象的各种几何参数和特征,如面积、周长、连通度、颗粒度、骨架和方向性等。这里介绍二值图象的形态学运算,对于灰度图象的形态学运算。
先来定义一些基本符号和关系。
1. 元素
设有一幅图象X,若点a在X的区域以内,则称a为X的元素,记作a∈X,如图6.1所示。
2. B包含于X
设有两幅图象B,X。对于B中所有的元素ai,都有ai∈X,则称B包含于(included in)X,记作B X,如图6.2所示。
3. B击中X
设有两幅图象B,X。若存在这样一个点,它即是B的元素,又是X的元素,则称B击中(hit)X,记作B↑X,如图6.3所示。
4. B不击中X
设有两幅图象B,X。若不存在任何一个点,它即是B的元素,又是X的元素,即B和X的交集是空,则称B不击中(miss)X,记作B∩X=Ф;其中∩是集合运算相交的符号,Ф表示空集。如图6.4所示。
|
|
|
|
5. 补集
设有一幅图象X,所有X区域以外的点构成的集合称为X的补集,记作Xc,如图6.5所示。显然,如果B∩X=Ф,则B在X的补集内,即B Xc。
6. 结构元素
设有两幅图象B,X。若X是被处理的对象,而B是用来处理X的,则称B为结构元素(structure element),又被形象地称做刷子。结构元素通常都是一些比较小的图象。
7. 对称集
设有一幅图象B,将B中所有元素的坐标取反,即令(x,y)变成(-x,-y),所有这些点构成的新的集合称为B的对称集,记作Bv,如图6.6所示。
8. 平移
设有一幅图象B,有一个点a(x0,y0),将B平移a后的结果是,把B中所有元素的横坐标加x0,纵坐标加y0,即令(x,y)变成(x+x0,y+y0),所有这些点构成的新的集合称为B的平移,记作Ba,如图6.7所示。
|
|
好了,介绍了这么多基本符号和关系,现在让我们应用这些符号和关系,看一下形态学的基本运算。
把结构元素B平移a后得到Ba,若Ba包含于X,我们记下这个a点,所有满足上述条件的a点组成的集合称做X被B腐蚀(Erosion)的结果。用公式表示为:E(X)={a| Ba X}=X B,如图6.8所示。
图6.8中X是被处理的对象,B是结构元素。不难知道,对于任意一个在阴影部分的点a,Ba 包含于X,所以X被B腐蚀的结果就是那个阴影部分。阴影部分在X的范围之内,且比X小,就象X被剥掉了一层似的,这就是为什么叫腐蚀的原因。
值得注意的是,上面的B是对称的,即B的对称集Bv=B,所以X被B腐蚀的结果和X被 Bv腐蚀的结果是一样的。如果B不是对称的,让我们看看图6.9,就会发现X被B腐蚀的结果和X被 Bv腐蚀的结果不同。
图6.8和图6.9都是示意图,让我们来看看实际上是怎样进行腐蚀运算的。
在图6.10中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B,那个标有origin的点是中心点,即当前处理元素的位置,我们在介绍模板操作时也有过类似的概念。腐蚀的方法是,拿B的中心点和X上的点一个一个地对比,如果B上的所有点都在X的范围内,则该点保留,否则将该点去掉;右边是腐蚀后的结果。可以看出,它仍在原来X的范围内,且比X包含的点要少,就象X被腐蚀掉了一层。
图6.10 腐蚀运算
图6.11为原图,图6.12为腐蚀后的结果图,能够很明显地看出腐蚀的效果。
膨胀(dilation)可以看做是腐蚀的对偶运算,其定义是:把结构元素B平移a后得到Ba,若Ba击中X,我们记下这个a点。所有满足上述条件的a点组成的集合称做X被B膨胀的结果。用公式表示为:D(X)={a | Ba↑X}=X B,如图6.13所示。图6.13中X是被处理的对象,B是结构元素,不难知道,对于任意一个在阴影部分的点a,Ba击中X,所以X被B膨胀的结果就是那个阴影部分。阴影部分包括X的所有范围,就象X膨胀了一圈似的,这就是为什么叫膨胀的原因。
同样,如果B不是对称的,X被B膨胀的结果和X被 Bv膨胀的结果不同。
让我们来看看实际上是怎样进行膨胀运算的。在图6.14中,左边是被处理的图象X(二值图象,我们针对的是黑点),中间是结构元素B。膨胀的方法是,拿B的中心点和X上的点及X周围的点一个一个地对,如果B上有一个点落在X的范围内,则该点就为黑;右边是膨胀后的结果。可以看出,它包括X的所有范围,就象X膨胀了一圈似的。
细化
细化(thinning)算法有很多,这里介绍一种简单而且效果很好的算法,用它就能够实现从文本抽取骨架的功能。我们的对象是白纸黑字的文本,但在程序中为了处理的方便,还是采用256级灰度图,不过只用到了调色板中0和255两项。
所谓细化,就是从原来的图中去掉一些点,但仍要保持原来的形状。实际上,是保持原图的骨架。所谓骨架,可以理解为图象的中轴,例如一个长方形的骨架是它的长方向上的中轴线;正方形的骨架是它的中心点;圆的骨架是它的圆心,直线的骨架是它自身,孤立点的骨架也是自身。文本的骨架嘛,前言中的例子显示的很明白。那么怎样判断一个点是否能去掉呢?显然,要根据它的八个相邻点的情况来判断,我们给几个例子(如图6.22所示)。
图6.22中,(1)不能删,因为它是个内部点,我们要求的是骨架,如果连内部点也删了,骨架也会被掏空的;(2)不能删,和(1)是同样的道理;(3)可以删,这样的点不是骨架;(4)不能删,因为删掉后,原来相连的部分断开了;(5)可以删,这样的点不是骨架;(6)不能删,因为它是直线的端点,如果这样的点删了,那么最后整个直线也被删了,剩不下什么;总结一下,有如下的判据:(1)内部点不能删除;(2)孤立点不能删除;(3)直线端点不能删除;(4)如果P是边界点,去掉P后,如果连通分量不增加,则P可以删除。
我们可以根据上述的判据,事先做出一张表,从0到255共有256个元素,每个元素要么是0,要么是1。我们根据某点(当然是要处理的黑色点了)的八个相邻点的情况查表,若表中的元素是1,则表示该点可删,否则保留。
查表的方法是,设白点为1,黑点为0;左上方点对应一个8位数的第一位(最低位),正上方点对应第二位,右上方点对应的第三位,左邻点对应第四位,右邻点对应第五位,左下方点对应第六位,正下方点对应第七位,右下方点对应的第八位,按这样组成的8位数去查表即可。例如上面的例子中(1)对应表中的第0项,该项应该为0;(2)对应37,该项应该为0;(3)对应173,该项应该为1;(4)对应231,该项应该为0;(5)对应237,该项应该为1;(6)对应254,该项应该为0;(7)对应255,该项应该为0。
这张表我已经替大家做好了,可花了我不少时间呢!
static int erasetable[256]={
0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1,
1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,1,
0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1,
1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,1,
1,1,0,0,1,1,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
1,1,0,0,1,1,0,0, 1,1,0,1,1,1,0,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1,
1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,1,
0,0,1,1,0,0,1,1, 1,1,0,1,1,1,0,1,
1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,0,
1,1,0,0,1,1,0,0, 0,0,0,0,0,0,0,0,
1,1,0,0,1,1,1,1, 0,0,0,0,0,0,0,0,
1,1,0,0,1,1,0,0, 1,1,0,1,1,1,0,0,
1,1,0,0,1,1,1,0, 1,1,0,0,1,0,0,0
};
有了这张表,算法就很简单了,每次对一行一行的将整个图象扫描一遍,对于每个点(不包括边界点),计算它在表中对应的索引,若为0,则保留,否则删除该点。如果这次扫描没有一个点被删除,则循环结束,剩下的点就是骨架点,如果有点被删除,则进行新的一轮扫描,如此反复,直到没有点被删除为止。
实际上,该算法有一些缺陷。举个简单的例子,有一个黑色矩形,如图6.23所示。
图6.23经过细化后,我们预期的结果是一条水平直线,且位于该黑色矩形的中心。实际的结果确实是一条水平直线,但不是位于黑色矩形的中心,而是最下面的一条边。
为什么会这样,我们来分析一下:在从上到下,从左到右的扫描过程中,我们遇到的第一个黑点就是黑色矩形的左上角点,经查表,该点可以删。下一个点是它右边的点,经查表,该点也可以删,如此下去,整个一行被删了。每一行都是同样的情况,所以都被删除了。到了最后一行时,黑色矩形已经变成了一条直线,最左边的黑点不能删,因为它是直线的端点,它右边的点也不能删,因为如果删除,直线就断了,如此下去,直到最右边的点,也不能删,因为它是直线的右端点。所以最下面的一条边保住了,但这并不是我们希望的结果。
解决的办法是,在每一行水平扫描的过程中,先判断每一点的左右邻居,如果都是黑点,则该点不做处理。另外,如果某个黑点被删除了,那么跳过它的右邻居,处理下一个点。这样就避免了上述的问题。
|
|
解决了上面的问题,我们来看看处理后的结果,如图6.24所示。这次变成一小段竖线了,还是不对,是不是很沮丧?别着急,让我们再来分析一下:在上面的算法中,我们遇到的第一个能删除的点就是黑色矩形的左上角点;第二个是第一行的最右边的点,即黑色矩形的右上角点;第三个是第二行的最左边的点;第四个是第二行的最右边的点;……;整个图象处理这样一次后,宽度减少2。每次都是如此,直到剩最中间一列,就不能再删了。为什么会这样呢?原因是这样的处理过程只实现了水平细化,如果在每一次水平细化后,再进行一次垂直方向的细化(只要把上述过程的行列换一下),就可以了。
这样一来,每处理一次,删除点的顺序变成:(先是水平方向扫描)第一行最左边的点;第一行最右边的点;第二行最左边的点;第二行最右边的点;……最后一行最左边的点;最后一行最右边的点;(然后是垂直方向扫描)第二列最上边的点(因为第一列最上边的点已被删除);第二列最下边的点;第三列最上边的点;第三列最下边的点;……倒数第二列最上边的点(因为倒数第一列最上边的点已被删除);倒数第二列最下边的点。我们发现,刚好剥掉了一圈,这也正是细化要做的事。实际的结果也验证了我们的想法。