- 传统推荐算法库使用--mahout初体验
Huterox
推荐算法算法机器学习
文章目录前言环境准备调用混合总结前言郑重声明:本博文做法仅限毕设糊弄老师使用,不建议生产环境使用!!!老项目缝缝补补又是三年,本来是打算直接重写写个社区然后给毕设使用的。但是怎么说呢,毕竟毕设的主角不是xx社区,这个社区是为我的编译器服务的,为了推广这个编译器,然后我才做了这个社区。然而不幸的是,开题答辩的时候,各位“专家”叫我以xx社区为主,听起来高级。于是没有办法,我只能强行做个社区,怎么做呢
- 基于音乐/电影/图书的协同过滤推荐算法代码实现
74b3a3e489d4
基于音乐/电影/图书的协同过滤推荐算法代码实现一、开发工具及使用技术MyEclipse10、jdk1.7、tomcat7、jsp、javascript、jquery、bootstrap、webuploader、layer、ssh、mysql、navicat、mahoutAPI等。二、开发过程1、本文主要介绍基于音乐的协同过滤推荐算法代码实现,电影、图书等推荐原理相同。2、本文使用的推荐算法有:基于
- Hadoop 大数据技术原理与应用
kk8_
hadoop大数据hdfs
Hadoop大数据技术原理与应用大数据概述定义特征大量,多样,高速,价值研究意义应用场景医疗,金融,零售Hadoop概述历史优势扩容能力强,成本低,高效率,可靠性,高容错Hadoop生态分布式存储系统(HDFS)分布式计算框架(MapReduce)资源管理(YARN)数据迁移(Sqoop)数据挖掘算法库(Mahout)分布式数据库(HBase)分布式协调服务(Zookeeper)数据仓库(Hive
- 【大数据分析与挖掘技术】概述
Francek Chen
大数据技术基础数据分析数据挖掘Mahout
目录一、数据挖掘简介(一)数据挖掘对象(二)数据挖掘流程(三)数据挖掘的分析方法(四)经典算法二、Mahout(一)Mahout简介(二)主要特性(三)Mahout安装与配置一、数据挖掘简介需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市
- 【大数据分析与挖掘技术】Mahout推荐算法
Francek Chen
大数据技术基础数据分析人工智能数据挖掘Mahout
目录一、推荐的定义与评估(一)推荐的定义(二)推荐的评估二、Mahout中的常见推荐算法(一)基于用户的推荐算法(二)基于物品的推荐算法(三)基于SVD的推荐算法(四)基于线性插值的推荐算法(五)基于聚类的推荐算法三、对GroupLens数据集进行推荐与评价(一)如何使用推荐器进行推荐(二)如何评估推荐器的好坏推荐是Mahout机器学习算法的主题之一,它极大地渗透到了人们日常生活的方方面面,比如,
- 计算机毕业设计之全网独家Spark租房爬虫数据分析与推荐系统 租房大数据 租房app 租房数据分析 租房爬虫 房源推荐系统 房源数据分析 房源可视化
haochengxu2022
数据分析爬虫推荐系统spark爬虫数据分析推荐系统
一、网站·登录与注册、注销·短信验证码修改密码·我的信息:身份证实名认证·租房业务流程(预约+看房+支付+完成+评价)、进度步骤条展示·支付宝沙箱支付·房屋浏览、中介信息查看·房屋推荐(基于mahout协同过滤算法)·房屋评价、点赞与收藏二、后端·统计主页、个人信息(带头像上传)、权限管理、用户管理、资讯管理、通知管理、日志管理、评论管理、轮播图管理、房屋管理、中介管理、订单管理。·中介权限可以登
- 推荐系统中协同过滤算法实现分析
weixin_33853794
人工智能python数据库
2019独角兽企业重金招聘Python工程师标准>>>原创博客,欢迎转载,转载请注明:http://my.oschina.net/BreathL/blog/62519最近研究Mahout比较多,特别是里面协同过滤算法;于是把协同过滤算法的这个实现思路与数据流程,总结了一下,以便以后对系统做优化时,有个清晰的思路,这样才能知道该如何优化且优化后数据亦能正确。推荐中的协同过滤算法简单说明下:首先,通过
- 大数据分析- 基于Hadoop/Mahout的大数据挖掘
shenmanli
大数据hadoop数据挖掘行业应用开发人员
随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop平台。Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。一、培训对象1,系统架构师、系
- “大数据分析挖掘-基于Hadoop/Mahout/Mllib的大数据挖掘(含Spark、Storm和Docker应用介绍)”培训
shenmanli
培训课程公开课企业培训大数据hadoopspark
随着互联网、移动互联网和物联网的发展,我们已经切实地迎来了一个大数据的时代。大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求。目前对大数据的分析工具,首选的是Hadoop/Yarn平台。Hadoop/Yarn在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。为解决广大
- springboot集成mahout实现简单基于协同过滤算法的文章推荐算法
程序个人练习生
开源项目学习算法springboot推荐算法
文章目录参考文章前言1.建表并且生成一些数据首先,建立一个用户文章操作表(user_article_operation)使用casewhen语句简单统计数据2.代码与测试只需要根据表生成相应实体类(注意要加一个value属性来存储分数)主要代码如下,其实就两个方法userArticleOperationMapper.getAllUserPreference()方法收集数据mapper文件如下测试算
- java电影推荐系统_基于Mahout的电影推荐系统
语文乌托邦
java电影推荐系统
1.Mahout简介ApacheMahout是ApacheSoftwareFoundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。经典算法包括聚类、分类、协同过滤、进化编程等等,并且,在Mahout的最近版本中还加入了对ApacheHadoop的支持,使这些算法可以更高效的运行在云计算环境中。2.Taste简介T
- mahout 源码解析之聚类--聚类迭代模型
theonlytank2011
数据挖掘mahout源码mahout源码解析
在前面讲聚类策略时,包org.apache.mahout.clustering.iterator里面还有几个类没有进行讲解,这次做下收尾工作。ClusterIterator利用ClusterClassifier和指定的迭代次数将样本进行聚类。其中有三个具体的函数。iterate主要对内存中的数据进行聚类,输入就为一个Vector类型的迭代器。publicClusterClassifieritera
- 理论学习--【Hadoop生态原理学习】
zenas_yuan
Hadoophadoop
一、Hadoop原理1.核心:HDFS(存储)、MapReduce(分析)解决大量数据存储与处理的问题离线分析:hive实现查询:hbaseBI分析:Mahout2.版本1.0mapreduce还进行资源调度2.0mapreduce=yarn(资源调度)+mapreduce(进行计算运行在yarn上),HDfs:nn,ha2.1.2yarn还支持strom、spark、。。选择考虑因素:是否开源、
- 推荐系统-基于物品协同过滤算法代码实现
Moutai码农
大数据推荐系统算法推荐算法大数据spark
1、简介当前Spark没有像mahout那样,严格区分基于物品的协同过滤推荐(ItemCF)和基于用户的协同过滤推荐(UserCF),只有基于模型的协同过滤推荐算法ALS(model-basedCF)。但ALS算法对于一些特定的问题(用户数量较小的场景,以及物品数量明显小于用户数量的场景),效果并不理想,不像mahout提供了各种推荐算法选择。为了充分利用spark在速度上带来的提升同时为满足一些
- java+jsp+mysql实现在线电影推荐系统movieCFWeb mahout实现基于用户的协同过滤推荐算法 基于项目的协同过滤推荐算法
74b3a3e489d4
java+jsp+mysql实现在线电影推荐系统movieCFWeb一、项目简介http://localhost:8080/movieCFWeb/前台http://localhost:8080/movieCFWeb/admin后台自定义数据,mahout实现基于用户的协同过滤推荐算法前台包含用户注册、登录、搜索电影、分页、电影详情、评分、修改信息、评分列表、推荐电影等功能后台包括用户、电影、评分、
- 2.3 初探Hadoop世界
howard2005
数据清洗和预处理大数据离线分析hadoop大数据分布式
文章目录零、学习目标一、导入新课二、新课讲解(一)Hadoop的前世今生1、Google处理大数据三大技术2、Hadoop如何诞生3、Hadoop主要发展历程(二)Hadoop的优势1、扩容能力强2、成本低3、高效率4、可靠性5、高容错性(三)Hadoop的生态体系1、HDFS分布式文件系统2、MapReduce分布式计算框架3、Yarn资源管理框架4、Sqoop数据迁移工具5、Mahout数据挖
- 「大数据集群的搭建和使用」背景知识:大数据Hadoop生态圈介绍
优秀的Athena在休息
大数据集群的搭建和使用大数据hadoop分布式
目录一、Hadoop简介二、Hadoop的运行模式1.单机模式2.伪分布式模式3.完全分布式模式三、Hadoop生态圈组件1.HDFS2.MapReduce3.YARN4.Hive5.Pig6.HBase7.HCatalog8.Avro9.Thrift10.Drill11.Mahout12.Sqoop13.Flume14.Ambari15.Zookeeper四、Hadoop优缺点五、Hadoop学
- 【大数据】Hadoop 生态系统及其组件
G皮T
#Hadoophadoopbigdata大数据hdfshivemapreduceyarn
Hadoop生态系统及其组件1.Hadoop生态系统的组成2.Hadoop生态系统简介2.1HDFS2.2MapReduce2.3YARN2.4Hive2.5Pig2.6HBase2.7HCatalog2.8Avro2.9Thrift2.10Drill2.11Mahout2.12Sqoop2.13Flume2.14Ambari2.15Zookeeper2.16Oozie1.Hadoop生态系统的组
- 26Hbase介绍及其数据模型和架构(hbase学习1)
文茶君
Hbase介绍Hadoop生态系统spark已经替代mahouthbase简介:非关系型数据库知识面扩展cassandra、hbase、mongodb(文档型数据库)、rediscouchdb,文件存储数据库Neo4j非关系型图数据库HbaseHadoopDatabase,是一个高可靠性、高性能、面向列(面向列的KV数据库)、可伸缩(动态扩展机器。不需要停服务)、实时读写的分布式数据库利用Hado
- Item-Based Recommendations with Hadoop
liuyuan185442111
OldHadoophadoop大数据分布式
Mahout在MapReduce上实现了Item-BasedCollaborativeFiltering,这里我尝试运行一下。安装Hadoop从下载Mahout并解压准备数据下载1MillionMovieLensDataset,解压得到ratings.dat,用sed‘s/:[0-9]{1,}):[0-9]{1})::[0-9]{1,}$/,\1,\2/’ratings.dat处理成需要的格式。运
- 【大数据毕设】基于Hadoop的音乐推荐系统论文(三)
Maynor996
#课设&毕设大数据课程设计hadoop
博主介绍:✌全网粉丝6W+,csdn特邀作者、博客专家、大数据领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于大数据技术领域和毕业项目实战✌文末获取项目联系摘要本文基于Hadoop技术,设计并实现了一个名为“酷酷音乐网站”的系统,用于音乐资源的存储、管理和推荐。该系统采用Hadoop生态系统中的组件,包括HDFS、MapReduce、HBase和Mahout等,实现
- 如何使用Java进行机器学习?
玥沐春风
java机器学习开发语言
在Java中进行机器学习,可以使用各种开源机器学习库和框架来实现。以下是一些常用的Java机器学习库:Weka:Weka是一个非常流行的机器学习库,提供了大量的算法和工具,以及用于数据预处理、特征选择和可视化的功能。Deeplearning4j:Deeplearning4j是一个用于深度学习的开源库,支持多种神经网络模型和训练算法,可以用于图像分类、文本分析等任务。ApacheMahout:Apa
- 阿里云上部署java8和hadoop3.0、spark、hive及Mahout
karwik
大数据
1.安装JDK1.8到oracle官网:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.htmllinux是64位的,安装jdk-8u131-linux-x64.tar.gz安装及配置参考http://blog.csdn.net/rchm8519/article/details/48721
- 【大数据】图解 Hadoop 生态系统及其组件
G皮T
#Hadoop大数据hadoop分布式hdfsmapreduceyarnhive
图解Hadoop生态系统及其组件1.HDFS2.MapReduce3.YARN4.Hive5.Pig6.Mahout7.HBase8.Zookeeper9.Sqoop10.Flume11.Oozie12.Ambari13.Spark在了解Hadoop生态系统及其组件之前,我们首先了解一下Hadoop的三大组件,即HDFS、MapReduce、YARN,它们共同构成了Hadoop分布式计算框架的核心
- 斯皮尔曼相关性 —— Spearman Correlation
ifnoelse
推荐算法usercacheaction存储
斯皮尔曼相关性可以理解为是排列后(Rank)用户喜好值之间的Pearson相关度。《MahoutinAction》中有这样的解释:假设对于每个用户,我们找到他最不喜欢的物品,重写他的评分值为“1”;然后找到下一个最不喜欢的物品,重写评分值为“2”,以此类推。然后我们对这些转换后的值求Pearson相关系数,这就是Spearman相关系数。斯皮尔曼相关度的计算舍弃了一些重要信息,即真实的评分值。但它
- java+jsp+mysql实现个性化租车推荐系统carcfrs mahout实现基于用户、项目的协同过滤推荐算法 SSH(spring+struts+hibernate)开发框架
74b3a3e489d4
java+jsp+mysql实现个性化租车推荐系统carcfrs一、项目简介只有前台用户,没有管理员,功能是用户登录、注册、评论、评分、收藏、热点推荐、基于用户根据评分进行协同过滤推荐算法,数据爬虫爬取一嗨租车数据。二、项目展示
- Mahout教程_编程入门自学教程_菜鸟教程-免费教程分享
菜鸟一记
笔记
教程简介Mahout是ApacheSoftwareFoundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。此外,通过使用ApacheHadoop库,Mahout可以有效地扩展到云中。Mahout教程-使用此入门教程,从简介,机器學習,环境,推荐,聚
- SSH(Spring+Hibernate+Struts)开发框架开发购物商城推荐系统shop mahout实现基于用户、项目的协同过滤推荐算法 个性化购物推荐系统
74b3a3e489d4
SSH(Spring+Hibernate+Struts)开发框架开发购物商城推荐系统shop项目简介1、前台:http://localhost:8080/ComputerRecom/后台:http://localhost:8080/ComputerRecom/admin/login.jsp用户名:admin密码:admin;2、推荐使用mahout接口实现基于用户、项目的协同过滤推荐算法,ssh开
- 大数据学习记录(hadoop hive flume azkaban sqoop)
左上晨
大数据hadoophiveflumeazkaban
大数据学习记录(hadoophiveflumeazkabansqoop)1.hadoop对海量数据进行分布式处理2.核心组件:HDFS(分布式文件系统)、YARN(运算资源调度系统)、MAPREDUCE(分布式运算编程框架)3.HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具4.HBASE:基于HADOOP的分布式海量数据库5.Mahout:基于mapreduce/spark/f
- 构建智能电商推荐系统:大数据实战中的Kudu、Flink和Mahout应用【上进小菜猪大数据】
上进小菜猪
大数据专栏合集大数据flink人工智能
上进小菜猪,沈工大软件工程专业,爱好敲代码,持续输出干货。本文将介绍如何利用Kudu、Flink和Mahout这三种技术构建一个强大的大数据分析平台。我们将详细讨论这些技术的特点和优势,并提供代码示例,帮助读者了解如何在实际项目中应用它们。通过本文的指导,读者将能够掌握如何使用这些工具来处理大规模数据集,并进行智能分析。在当今的信息时代,大数据分析成为了各行各业中不可或缺的一环。为了有效地处理海量
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag